Системой дифференциальных уравнений называется система вида

где x - независимый аргумент,

y i - зависимая функция, ,

y i | x=x0 =y i0 - начальные условия.

Функции y i (x), при подстановке которой система уравнений обращается в тождество, называется решением системой дифференциальных уравнений .

Численные методы решения систем дифференциальных уравнений.


Дифференциальным уравнением второго порядка называется уравнение вида



Функция y(x), при подстановке которой уравнение обращается в тождество, называется решением дифференциального уравнения .

Численно ищется частное решение уравнения (2), которое удовлетворяет заданным начальным условиям, то есть решается задача Коши.

Для численного решения дифференциальное уравнение второго порядка преобразуется в систему двух дифференциальных уравнений первого порядка и приводится к машинному виду (3). Для этого вводится новая неизвестная функция , слева в каждом уравнении системы оставляют только первые производные неизвестных функций, а в правых частях производных быть не должно

. (3)


Функция f 2 (x, y 1 , y) в систему (3) введена формально для того, чтобы методы, которые будут показаны ниже, могли быть использованы для решения произвольной системы дифференциальных уравнений первого порядка. Рассмотрим несколько численных методов решения системы (3). Расчетные зависимости для i+1 шага интегрирования имеют следующий вид. Для решения системы из n уравнений расчетные формулы приведены выше. Для решения системы из двух уравнений расчетные формулы удобно записать без двойных индексов в следующем виде:

  1. Метод Эйлера .

    у 1,i+1 =у 1,i +hf 1 (x i , y 1,i , y i),

    у i+1 =у i +hf 2 (x i , y 1,i , y i),

  2. Метод Рунге-Кутта четвертого порядка .

    у 1,i+1 =у 1,i +(m 1 +2m 2 +2m 3 +m 4)/6,

    у i+1 =у i +(k 1 +2k 2 +2k 3 +k 4)/6,

    m 1 =hf 1 (x i , y 1,i , y i),

    k 1 =hf 2 (x i , y 1,i , y i),

    m 2 =hf 1 (x i +h/2, y 1,i +m 1 /2, y i +k 1 /2),

    k 2 =hf 2 (x i +h/2, y 1,i +m 1 /2, y i +k 1 /2),

    m 3 =hf 1 (x i +h/2, y 1,i +m 2 /2, y i +k 2 /2),

    k 3 =hf 2 (x i +h/2, y 1,i +m 2 /2, y i +k 2 /2),

    m 4 =hf 1 (x i +h, y 1,i +m 3 , y i +k 3),

    k 4 =hf 2 (x i +h, y 1,i +m 3 , y i +k 3),

    где h - шаг интегрирования. Начальные условия при численном интегрировании учитываются на нулевом шаге: i=0, x=x 0 , y 1 =y 10 , y=y 0 .

Контрольное задание по зачетной работе.

Колебания с одной степенью свободы

Цель. Изучение численных методов решения дифференциальных уравнений второго порядка и систем дифференциальных уравнений первого порядка.

Задание. Численно и аналитически найти:

  1. закон движения материальной точки на пружинке х(t),
  2. закон изменения силы тока I(t) в колебательном контуре (RLC - цепи) для заданных в табл.1,2 режимов. Построить графики искомых функций.

Варианты заданий.


Таблица режимов



Варианты заданий и номера режимов:

  1. движение точки
  2. RLC - цепь


Рассмотрим более подробно порядок составления дифференциальных уравнений и приведения их к машинному виду для описания движения тела на пружинке и RLC-цепи.


  1. Название, цель работы и задание.
  2. Математическое описание, алгоритм (структограмма) и текст программы.
  3. Шесть графиков зависимости (три точные и три приближенные) x(t) или I(t), выводы по работе.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Пусть дана квадратная таблица из четырех чисел а 1 , а 2 , b 1 , b 2:

Число а 1 b 2 - а 2 b 1 называется определителем второго порядка, соответствующим таблице (1). Этот опредеяитель обозначается символом соответственно имеем:

Числа а 1 , а 2 , b 1 , b 2 называются элементами определителя. Говорят, что элементы а 1 , b 2 лежат на главной диагонали определителя, а 2 , b 1 - на побочной. Таким образом, определитель второго порядка равен разности между произведениями элементов, лежащих на главной и побочной диагоналях. Например,

Рассмотрим систему двух уравнений

с двумя неизвестными х, у. (Коэффициенты а 1 , b 1 , а 2 , b 2 и свободные члены hXi h2 предположим данными.) Введем обозначения

Определитель Δ, составленный из коэффициентов при неизвестных системы (3), называется определителем этой системы. Определитель Δ x получается путем замены элементов первого столбца определителя Δ свободными членами системы (3); определитель Δ y получается из определителя Δ при помощи замены свободными членами системы (3) элементов его второго столбца.

Если Δ ≠ 0, то система (3) имеет единственное решение; оно определяется формулами

x = Δ x /Δ , y = Δ y /Δ (5)

Если Δ = 0 и при этом хотя бы один из определителей Δ x , Δ y отличен от нуля, то система (3) совсем не имеет решений (как говорят, уравнения этой системы несовместимы).

Если же Δ = 0, но также Δ x = Δ y = 0, то система (3) имеет бесконечно много решений (в этом случае одно из уравнений системы есть следствие другого).

Пусть в уравнениях системы (3)h 1 = h 2 = 0; тогда система (3) будет иметь вид:

a 1 x + b 1 y = 0, a 2 x + b 2 y = 0. (6)

Система уравнений вида (6) называется однородной; она всегда имеет нулевое решение: x= 0, у = 0. Если Δ ≠ О, то это решение является единственным если же Δ = 0, то система (6), кроме нулевого, имеет бесконечно много других решений.

1204. Вычислить определители:


1205. Решить уравнения:


1206. Решить неравенства:


1207. Найти все решения каждой из следующих систем уравнений:


1208. Определить, при каких значениях а и b система уравнений Зх - ау = 1, 6х + 4у = b 1) имеет единственное решение; 2) не имеет решений; 3) имеет бесконечно много решений.

1209. Определить, при каком значении а система однородных уравнений 13x + 2у = 0, 5x + ау = 0 имеет ненулевое решение.

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Решение

Вначале мы решаем однородное дифференциальное уравнение:
(2)

Это уравнение второго порядка.

Решаем квадратное уравнение :
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим производную :
.
Свяжем функции и уравнением:
(6) .
Тогда
.

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;



.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные :
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

.
.





;
.

Ответ

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Решение

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных - замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:


.

В теории систем линейных уравнений и в некоторых других вопросах удобно использовать понятие определителя, или детерминанта.

Рассмотрим какую-либо четверку чисел записанных в виде квадратной таблицы (матрицы) по два в строках и по два в столбцах. Определителем или детерминантом, составленным из чисел этой таблицы, называется число , обозначаемое так:

Такой определитель называется определителем второго порядка, поскольку для его составления взята таблица из двух строк и двух столбцов. Числа, из которых составлен определитель, называются его элементами, при этом говорят, что элементы составляют главную диагональ определителя, а элементы - его побочную диагональ. Видно, что определитель равен разности произведений пар элементов, стоящих на его главной и побочной диагоналях.

Пример 1. Вычислить следующие определители второго порядка:

Решение, а) По определению имеем

С помощью определителей можно равенства (66.6), (66.7) и (66.8) переписать, поменяв местами их части, так:

Заметим, что определители весьма просто составляются по коэффициентам системы (66.2).

Действительно, определитель составляется из коэффициентов при неизвестных в этой системе. Он называется главным определителем системы (66.2). Назовем определителями для неизвестных х и у соответственно. Можно сформулировать следующее правило их составления: определитель для каждой из неизвестных получается из главного определителя, если в нем столбец коэффициентов при этой неизвестной заменить столбцом свободных членов (взятых из правых частей уравнений системы).

Пример 2. Систему (66.12) решить с помощью определителей.

Решение. Составляем и вычисляем главный определитель данной системы:

Теперь в нем заменим столбец коэффициентов при х (первый столбец) свободными членами. Получим определитель для х:

Подобным же образом найдем

Отсюда по формулам (66.11) получаем

Мы пришли к уже известному нам решению (1, -1).

Проведем теперь исследование системы линейных уравнений (66.2). Для этого вернемся к равенствам (66.9) и (66.10) и будем различать два случая:

Пусть Тогда, как уже отмечалось, формулы (66.11) дают единственное решение системы (66.2). Итак, если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое формулами (66.11); такая система называется определенной.

2) Пусть теперь . В зависимости от значений будем различать два случая.

а) Хотя бы один из определителей отличен от нуля; тогда система (66.2) не имеет решений. Действительно, пусть, например, . Равенство (66.9) не может удовлетворяться ни при каком значении так как это равенство получено как следствие системы (66.2), то система не имеет решений. Такая система называется несовместной.

б) Оба определителя равны нулю; равенства (66.9) и (66.10) удовлетворяются тождественно и для исследования системы (66.2) использованы быть не могут.

Докажем, что если и хотя бы один из коэффициентов при неизвестных в системе (66.2) отличен от нуля, то система имеет бесконечнее множество решений. Чтобы убедиться в этом, допустим, например, что . Из соотношений

и из записи второго уравнения системы (66.2), подставляя в него выражения коэффициентов

найдем, что оно отличается от первого уравнения лишь множителем т. е., по существу, совпадает с ним (равносильно ему). Система (66.2) сводится к одному лишь первому уравнению и определяет бесчисленное множество решений (такая система называется неопределенной). Возможен, в принципе, и такой крайний случай, как равенство нулю всех коэффициентов при неизвестных (он может встретиться при исследовании систем с буквенными коэффициентами). У такой системы

все определители равны нулю: однако, она является несовместной при или .

Подведем итоги исследования системы линейных уравнений (66.2). Имеется три вида таких систем:

1) Если , то система определенная, имеет единственное решение (66.11).

2) Если , но то система несовместна, решений не имеет.

3) Если хотя бы один из коэффициентов при неизвестных отличен от нуля), то система неопределенная, имеет бесконечное множество решений (сводится к одному уравнению).

Равенство нулю определителя,

означает пропорциональность элементов, стоящих в его строках (и обратно):

В силу этого признаки, отличающие линейные системы разных типов (определенные, неопределенные, несовместные), могут быть сформулированы в терминах пропорций между коэффициентами системы (без привлечения определителей).

Условие заменяется поэтому требованием пропорциональности (непропорциональности) коэффициентов при неизвестных:

В случае оказываются пропорциональными не только коэффициенты при неизвестных, но и свободные члены:

(эти пропорции получаются, например, из (67.6)). Если же, например, ДО, то из (66.6) видим, что - свободные члены не пропорциональны коэффициентам при неизвестных. Итак:

1) Если коэффициенты при неизвестных не пропорциональны:

то система определенная.

2) Если коэффициенты при неизвестных пропорциональны, а свободные члены им не пропорциональны:

то система несовместная.

3) Если пропорциональны коэффициенты при неизвестных и свободные члены:

то система неопределенная.

Проведенное исследование систем линейных уравнений с двумя неизвестными допускает простое геометрическое истолкование. Всякое линейное уравнение вида (38.4) определяет на координатной плоскости прямую линию. Уравнения системы (66.2) можно поэтому истолковать как уравнения двух прямых на плоскости, а задачу решения системы - как задачу об отыскании точки пересечения этих прямых.

Ясно, что возможны три случая: 1) данные две прямые пересекаются (рис. 61, а); этот случай отвечает определенной системе; 2) данные две прямые параллельны (рис. 61, б); этот случай соответствует несовместной системе;

3) данные прямые совпадают (рис. 61, в); этот случай соответствует неопределенной системе: каждая точка «дважды заданной» прямой будет решением системы.

Пример 3. Исследовать линейные системы:

Решение, а) Составим и вычислим главный определитель данной системы.