В некоторых случаях цитогенетического исследования бывает недостаточно для выдачи заключения о кариотипе, в этих случаях используют молекулярно-цитогенетические методы в частности флуоресцентную гибридизацию in situ (англ. - Fluorescence In Situ Hybridization - FISH) .

Появление новых технологий молекулярной цитогенетики, базирующихся преимущественно на in situ гибридизации нуклеиновых кислот, значительно расширило возможности хромосомной диагностики. Метод in situ гибридизации был разработан для локализации конкретных последовательностей ДНК непосредственно на цитологических препаратах. Произошел переход в идентификации хромосом и хромосомных районов с анализа цитологической организации хромосомы на анализ последовательностей ДНК, входящих в их состав. Сравнение эффективности классических цитологических методов выявления и анализа хромосомных перестроек, таких как дифференциальные окраски хромосом, с современными молекулярно-цитогенетическими технологиями показало, что при гематологических нарушениях цитологический анализ хромосом детектирует и правильно идентифицирует лишь около трети хромосомных перестроек, выявляемых при использовании спектрального кариотипирования (SKY). Еще около трети перестроек идентифицируются цитологическими методами неверно, а треть остается совсем незамеченной. Классические методы цитогенетического анализа позволяют выявлять лишь около 15 % хромосомных перестроек, идентифицируемых с помощью SKY.

В методе FISH используются флуоресцирующие молекулы для прижизненной окраски генов или хромосом. Метод используется для картирования генов и идентификации хромосомных аберраций.

Методика начинается с приготовления коротких последовательностей ДНК, называемых зондами, которые являются комплементарными по отношению к последовательностям ДНК, представляющим объект изучения. Зонды гибридизуются (связываются) с комплементарными участками ДНК и благодаря тому, что они помечены флуоресцентной меткой, позволяют видеть локализацию интересующих генов в составе ДНК или хромосом. В отличие от других методов изучения хромосом, требующих активного деления клетки, FISH можно выполнять на неделящихся клетках, благодаря чему достигается гибкость метода.

FISH может применяться для различных целей с использованием зондов трех различных типов:

  • * локус-специфичные зонды, связывающиеся с определенными участками хромосом. Данные зонды используются для идентификации имеющейся короткой последовательности выделенной ДНК, которая используется для приготовления меченого зонда и его последующей гибридизации с набором хромосом;
  • * альфоидные или центромерные зонды-повторы представляют собой повторяющиеся последовательности центромерных областей хромосом. С их помощью каждая хромосома может быть окрашена в различный цвет, что позволяет быстро определить число хромосом и отклонения от нормального их числа;
  • * зонды на всю хромосому являются набором небольших зондов, комплементарных к отдельным участкам хромосомы, но в целом покрывающими всю ее длину. Используя библиотеку таких зондов можно «раскрасить» всю хромосому и получить дифференциальный спектральный кариотип индивида. Данный тип анализа применяется для анализа хромосомных аберраций, например транслокаций, когда кусочек одной хромосомы переносится на плечо другой.

Гибридизация in situ с флуоресцентной меткой (FISH)

Материалом для исследования является кровь, костный мозг, биопсия опухоли, плацента, эмбриональные ткани или амниотическая жидкость. Образцы для исследования должны доставляться в лабораторию в свежем виде. Препараты (слайды) готовятся непосредственно из образцов ткани или после их культивирования. Могут использоваться как метафазные, так и интерфазные препараты клеток. Меченные флуоресцентными метками специфические ДНК-зонды гибридизуюся с хромосомной ДНК, причем можно одновременно использовать множественные зонды к разным локусам.

FISH является полезным и чувствительным методом цитогенетического анализа при выявлении количественных и качественных хромосомных аберраций, таких как делеции (в том числе и микроделеции), транслокации, удвоение и анэуплоидия. FISH на интерфазных хромосомах служит быстрым методом пренатальной диагностики трисомий по 21, 18 или 13 хромосомам или аберраций половых хромосом. В онкологии с помощью FISH можно выявлять рад транслокаций (bcr/abl, MLL, PML/RARA, TEL/AML1), связанных с гематологическими злокачественными новообразованиями. Метод также может использоваться для мониторинга остаточных явлений онкозаболевания после химиотерапии и пересадки костного мозга и выявления усиленных онкогенов (c-myc/n-myc), связанных с неблагоприятным прогнозом в отношении некоторых опухолей. FISH также используется для контроля приживаемости аллотрансплантата костного мозга, полученного от индивида противоположного пола.

FISH является чувствительным методом для идентификации хромосомных аберраций и одномоментного быстрого анализа большого (> 500) числа клеток. Метод обладает высокой точностью при идентификации природы хромосом и неизвестных фрагментов хромосомной ДНК.

Во всех без исключения случаях образование и рост связано с деятельностью гена типа HER2. Именно он отвечает за то, какое количество белков будет выделено женскому организму для развития тканей молочной железы. Когда перерождаются первые здоровые клетки в злокачественные, в рецепторы гена поступает информация о том, что требуется дополнительное деление клеточного материала.

Ген запускает программу наращивания дополнительных тканей внутри груди, хотя на самом деле этот клеточный материал будет использован опухолью для своего роста и развития. Так, карцинома, по сути, обманывает организм, и заставляет его питать рак за счет своих же ресурсов.

Задача фиш анализа при раке молочной железы, как раз и заключается в том, чтобы выявить неправильную работу гена HER2, и предпринять соответствующие меры реагирования в части назначения адекватного медицинского лечения.

Если своевременно не провести фиш тест при раке молочной железы, то даже в случае применения в процессе лечения тех или иных препаратов - это может привести к тому, что опухоль и дальше будет агрессивно развиваться, охватывать все новые ткани груди. Это так званые, последствия не правильно назначенной терапии из-за отсутствия объективных данных о функционировании HER2 гена.

В процессе прохождения фиш анализа врачом вводится в кровь пациентки специальные вещества, содержащие окрашивающие элементы, которые способны визуаллизировать картину хромосомных нарушений. Таким образом, доктор способен наглядно увидеть, а в дальнейшем изучить генетические аномалии в геноме женщины, которые привели к развитию онкологии груди.

Если отклонения в работе гена HER2 подтверждаются, то назначается соответствующее лечение. Если же нет, то врач с помощью других анализов устанавливает иную причину развития РМЖ.

Еще одним важным достоинством фиш анализа является то, что уже через пару дней пациент получает комплексный отчет о генетической предрасположенности к развитию того или иного онкологического заболевания. С помощью данного медицинского тестирования можно одновременно диагностировать патологию не только молочной железы, но и всех органов брюшной полости.

Информативное видео

Подобно тому, как в ходе Саузерн-блоттинга нуклеотидные зонды используют для идентификации фрагментов ДНК, цитогенетики могут применять подобные зонды для анализа хромосомных аберраций. Для этого гибридизируют меченные флюоресцентным красителем зонды с ДНК, содержащейся в фиксированных хромосомах на предметных стеклах.

Эта техника называется Fluorescence In Situ Hybridisation (FISH ), поскольку , содержащаяся в интерфазном хроматине или в метафазных хромосомах, фиксирована и денатурируется на стекле в одном месте (т.е. in situ), для обработки меченым зондом, гибридизирующимся с хромосомной ДНК. Зонд флюоресцирует при освещении хромосом светом с длиной волны, возбуждающей флюоресцентный краситель. Положение гибридизационного сигнала и, таким образом, позицию сегмента ДНК с гибридизированным зондом определяют микроскопически.

Обычно для FISH-анализа используют зонды - фрагменты ДНК, имеющие уникальное положение в хромосоме. Такие зонды проходят гибридизацию и помечают место в каждой гомологичной хромосоме, соответствующее нормальному положению последовательности зонда. FISH-зонд также может быть сложной смесью ДНК, полученной из всего плеча или даже целой хромосомы. В зависимости от состава зонда, при гибридизации с ним помечается вся хромосома или ее часть.

Такие смеси зондов известны как хромосомные зонды. Наконец, можно объединить 24 различных хромосомных зонда, меченных различными комбинациями флюоресцентных красителей, испускающих свечение разной длины волны, для каждой из 24 хромосом человека. Каждая хромосома помечается зондом с собственной характерной комбинацией длин световой волны. Все 24 хромосомных зонда объединяют и используют для FISH-анализа метафазных хромосом. Эта техника известна как спектральное кариотипирование (SKY).

Поскольку каждый хромосомоспецифичный зонд имеет флюоресценцию с собственной комбинацией длин волн, мутантные хромосомы, состоящие из частей различных хромосом, при SKY-анализе хорошо различаются, а хромосомы, включенные в перестройку, могут быть легко идентифицированы. FISH, использующий единичную непрерывную последовательность нуклеотидов, хромосомоспецифические зонды и SKY-метод с комбинацией зондов для всех хромосом, широко применяют в клинической цитогенетике для обнаружения хромосомных аберраций, таких как делеции, инсерции и транслокализации.

Флюоресцентная гибридизация in situ

Флюоресце́нтная гибридиза́ция in situ , или метод FISH (англ. Fluorescence in situ hybridization - FISH ) - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ . Кроме того, FISH используют для выявления специфических мРНК в образце ткани . В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

Зонды

При флюоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды , меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение). При прямом мечении связавшийся с мишенью ДНК-зонд можно наблюдать при помощи флюоресцентного микроскопа сразу по завершении гибридизации. В случае непрямого мечения необходима дополнительная процедура окрашивания, в ходе которой биотин выявляют при помощи флуоресцентно-меченного авидина или стептавидина, а дигоксигенин - при помощи флюоресцентно-меченых антител. Хотя непрямой вариант мечения ДНК-проб требует дополнительных реактивов и временных затрат, этот способ позволяет добиться обычно более высокого уровня сигнала за счёт присутствия на молекуле антитела или авидина 3-4 молекул флюорохрома. Кроме того, в случае непрямого мечения возможно каскадное усиление сигнала.

Для создания ДНК проб используют клонированные последовательности ДНК, геномную ДНК, продукты ПЦР -реакции, меченые олигонуклеотиды , а также ДНК, полученную при помощи микродиссекции .

Мечение зонда может осуществляться разными способами, например, путем ник-трансляции или при помощи ПЦР с мечеными нуклеотидами.

Процедура гибридизации

Схема эксперимента по флюоресцентной гибридизации in situ для локализации положения гена в ядре

На первом этапе происходит конструирование зондов. Размер зонда должен быть достаточно большим для того, чтобы гибридизация происходила по специфическому сайту, но и не слишком большой (не более 1 тыс п.о), чтобы не препятствовать процессу гибридизации. При выявлении специфических локусов или при окраске целых хромосом надо заблокировать гибридизацию ДНК-проб с неуникальными повторяющимися ДНК-последовательностями путём добавления в гибридизационную смесь немеченой ДНК повторов (например, Cot-1 DNA). Если ДНК-зонд представляет собой двуцепочечную ДНК, то перед гибридизацией её необходимо денатурировать.

На следующем этапе приготавливают препараты интерфазных ядер или метафазных хромосом. Клетки фиксируют на субстрате, как правило, на предметном стекле, затем проводят денатурацию ДНК. Для сохранения морфологии хромосом или ядер денатурацию проводят в присутствии формамида , что позволяет снизить температуру денатурации до 70°.

Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа. Интенсивность флюоресцентного сигнала зависит от многих факторов - эффективности мечения зондом, типа зонда и типа флюоресцентного красителя.

Литература

  • Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2006. 152 с.
  • Рубцов Н.Б. Гибридизация нуклеиновых кислот in situ в анализе хромосомных аномалий. Глава в книге «Введение в молекулярную диагностику» Т. 2. «Молекулярно-генетические методы в диагностике наследственных и онкологических заболеваний» / Под ред. М.А. Пальцева, Д.В. Залетаева. Учебная литература для студентов медицинских вузов. М.: Медицина, 2011. Т. 2. С. 100–136.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Флюоресцентная гибридизация in situ" в других словарях:

    У этого термина существуют и другие значения, см. гибридизация. Гибридизация ДНК, гибридизация нуклеиновых кислот соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности… … Википедия