Гидростатическое давление в легочных капиллярах (Рс) является основной силой, способствующей выходу жидкости из капилляра в интерстиций. Давление заклинивания в легочных капиллярах (ДЗЛК) часто путают с Рс. ДЗЛК используют для оценки давления в левом предсердии (ДЛП) и отражает оно давление в более дистальных по отношению к легочным капиллярам участках малого круга кровообращения. Чтобы жидкость имела возможность перемещаться из правых отделов сердца через легкие в левое предсердие, ДЛП должно быть ниже показателя Рс. При нормальных условиях градиент между этими двумя показателями небольшой, например, в пределах 1-2 мм рт.ст. Количественное различие между ДЗЛК и Рс зависит от легочного венозного сопротивления.

При застойной сердечной недостаточности давление в левом предсердии возрастает по причине снижения контрактильности и задержки жидкости. Это повышенное давление передается в расположенные выше по течению участки легочного кровотока и приводит к повышению Рс. Если такое увеличение является значительным, жидкость входит в интерстиций так быстро, что возникает отек легких. Описанный механизм отека легких часто называют “кардиогенным”. Смысл этого термина состоит в том, что увеличение Рс вызвано увеличением ДЗЛК (ДЛП). Однако при легочной гипертензии количественное различие между ДЗЛК и Рс может значительно увеличиваться. Развивающаяся при септических состояниях легочная гипертензия приводит к драматическому увеличению легочного венозного сопротивления, и при этом Рс может расти, в то время как ДЗЛК падает (12). Таким образом, при некоторых состояниях гидростатический отек может развиваться даже на фоне нормального или сниженного ДЗЛК. Это было продемонстрировано экспериментальным путем на животных, которым вводились эндотоксины с целью вызывать РДС. Такая методика приводит к развитию значительного отека легких всего за несколько часов. Однако когда мы произвели инфузию нитропруссида натрия (НПН) с целью снизить легочную гипертензию, отека легких не возникло даже тогда, когда ДЛП оставалось неизмененным (рис. 1) (13).

Легочная гипертензия при некоторых патологических состояниях, таких как сепсис и РДСВ, может привести к возникновению отека легких, даже в случаях, когда ДЗЛК остается нормальным или сниженным. Исследуя своих пациентов, Gattinoni и соавт. обнаружили, что количество отечной жидкости при отеке легких прямо пропорционально давлению в легочной артерии, а вовсе не ДЗЛК (14). Определенная часть избыточного давления в легочных артериях передается в систему легочных капилляров, но никогда не достигает левого предсердия.

Основная проблема, с которой сталкиваются исследователи жидкостного баланса в легких, состоит в трудности измерения величины Рс. Рс оценивалось у обездвиженных животных на основе данных, полученных при препаровке изолированных легких. Однако полученные при препаровке изолированных легких данные не совсем точно отражают ситуацию in vivo. Изучение кривой движений легочной артерии при раздувании специального баллона является наиболее обещающей методикой, которую можно выполнить у постели больного, однако еще не подобрана оптимальная математическая модель для ее описания. Для оценки упомянутой кривой движений может понадобиться компьютерный анализ, который позволит оптимизировать процесс переработки данных. Нормальная величина Рс, вероятнее всего, состовляет около 8 мм рт. ст.

Коллоидное осмотическое давление в капиллярах (пс) отражает осмотическое давление, создаваемое той фракцией белков плазмы, которые плохо проходят сквозь капиллярную мембрану. Коллоидное осмотическое давление в капилляре является основной силой, противодействующей Рс. Таким образом, снижение показателя пс приводит к увеличению выхода жидкости из капилляра (Jv), что может привести к образованию отека. Метод прямого измерения величины пс предполагает использование искусственной мембраны с определенными размерами пор, однако капиллярная мембрана состоит из пор различной величины. Поскольку искусственная мембрана не совсем точно воспроизводит строение капиллярной мембраны, многие исследователи сначала измеряют концентрацию белка, а затем рассчитывают величину пс с использованием уравнений. Нормальное пс составляет 24 мм рт. ст.

Коэффициент отражения (сигма) отражает фракцию белка, которая отражается от капиллярной мембраны и не проходит через нее. Это показатель относительной проницаемости мембраны, указывающий, насколько осмотический градиент повлияет в конкретных условиях на фильтрацию жидкости. Некоторые ткани, такие как головной мозг, являются непроницаемыми для белков, коэффициент сигма при этом равен 1. Напротив, коэффициент сигма в печени приближается к нулю; это означает, что печеночный капилляр полностью проницаем для белков плазмы, а количество фильтрующейся непосредственно в паренхиму печени жидкости почти полностью зависит от величины гидростатическогго давления. Показатель сигма в легких равен 0.7. Капиллярная мембрана в легких работает по принципу сита, эстрагируя белки плазмы из покидающей капилляр жидкости, позволяя лишь третьей части от общего количества плазменных белков проникнуть в интерстиций. По этой причине концентрация белка в профильтровавшейся жидкости меньше, чем в плазме. Определенные вещества или заболевания приводят к снижению показателя сигма в легочных капиллярах (проницаемость увеличивается) (15).



Коэффициет фильтрации (Kf) отражает физические характеристики мембраны, такие как проницаемость для воды и площадь общей поверхности. Подобно Рс, величину Kf можно измерить на изолированных легких, но сложно опредилить ее in vivo. Увеличение общей площади поверхности капиллярной мембраны или увеличение ее проницаемости для воды приводит к выходу большего количества воды в интерстиций, даже если другие параметры остаются неизменными.

Согласно классической теории Э. Старлинга (1896), нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидноосмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 12-45), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости. Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт.ст., а в венозном конце - 8-10 мм рт.ст.

Установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт.ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление (ЭГД) - разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное ~ 36 мм рт.ст. (30 - (-6)). В венозном конце капилляра величина ЭГД соответствует 14 мм рт.ст.

Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт.ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое

Обмен жидкости между различными частями капилляра и тканью (по Э. Старлингу): pa - нормальный перепад гидростатического давления между артериальным (30 мм рт.ст.) и венозным (8 мм рт.ст.) концом капилляра; bc - нормальная величина онкотического давления крови (28 мм рт.ст.). Влево от точки A (участок Ab) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (участок Ac) происходит ток жидкости из ткани в капилляр (А1 - точка равновесия). При повышении гидростатического давления (p"a") или снижении онкотического давления (b"c") точка A смещается в положение А1 и А2. В этих случаях переход жидкости из ткани в капилляр затрудняется и возникает отек

давление интерстициальной жидкости для большинства тканей составляет ~ 5 мм рт.ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости - в тканях. Эффективная онкотическая всасывающая сила (ЭОВС) - разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет ~ 23 мм рт. ст. (28-5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициального пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 12-45).



В артериальном конце капилляров (ЭГД = 36 мм рт.ст., а ЭОВС = 23 мм рт.ст.) сила фильтрации преобладает над эффективной онкотической всасывающей силой на 13 мм рт.ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт.ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт.ст. (14 - 23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд.

По Э. Старлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в сосуд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт.ст., а всасывающая сила в венозном конце капилляра -9 мм рт.ст. Это должно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит больше, чем возвращается обратно. Так оно и происходит - за сутки из кровяного русла в межклеточное пространство переходит около 20 л жидкости, а обратно через сосудистую стенку возвращается только 17 л. Три литра транспортируется в общий кровоток через лимфатическую систему. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

81) Опишите закон Старлинга применительно к обмену жидкости через стенки капилляров малого круга кровообращения и других сосудистых пространств.

Осмотические силы вносят вклад в распределение воды, проникающей через стенки капилляров, хотя высокая проницаемость этих мембран для солей натрия и глюкозы делает данные растворенные вещества неэффективными детерминантами внутрисосудистого объема.

Напротив, белки плазмы - действенные субстанции в сосудистом пространстве, поскольку их крупные молекулы проникают через капиллярные стенки с большим трудом. Перемещение жидкости путем конвекции через стенки капилляров определяется разностью между силами, которые поддерживают фильтрацию, и силами, способствующими реабсорбции жидкости. Закон Старлинга в целом выражается следующим образом:

Общее перемещение жидкости = проницаемость капилляров (силы фильтрации - силы реабсорбции).

82) Дайте более детальное объяснение различных компонентов закона Старлинга для капиллярно-интерстициального обмена.

C использованием общей формулы для переноса жидкости конвекцией, приведенной ранее, закон Старлинга может быть выражен следующим образом:

J v - (АР + А л) А L p ,

где Jv - суммарное перемещение жидкости или суммарный поток объема, AP - градиент гидростатического давления, An - градиент осмотического давления, А - площадь мембраны для потока объема, Lp - гидравлическая проницаемость мембраны. AP рассчитывают следующим образом:

AP = Pcap - PlSF

где P cap - капиллярное гидростатическое давление, Pisf - гидростатическое давление интерстициальной жидкости. Ад рассчитывают по следующей формуле:

Атг = Tip - Pisf

где Пр - онкотическое давление плазмы, Tcisf - внутритканевое онкотическое давление (образованное фильтрованными белками плазмы и внутритканевыми мукоподисахарида- ми). Обозначение Kf (коэффициент фильтрации, или суммарная проницаемость капиллярной мембраны) чаще всего используется в уравнении Старлинга для замены выражения А L p (величина площади поверхности, доступной для перемещения жидкости, умноженная на гидравлическую проницаемость стенки капилляра), поскольку составная величина, выраженная как Kf, может быть точно определена количественно, в то время как ее составляющие нельзя измерить с достаточной точностью.

83) Каковы значения сил Старлинга в капиллярах малого круга кровообращения?

AP составляет приблизительно 16 мм рт.ст., так как P cap равно примерно 14 мм рт.ст., a Pisf - 2 мм рт.ст. Приблизительная величина Ал - 16 мм рт.ст., так как ж р составляет примерно 25 мм рт.ст., a 7Iisf - 9 мм рт.ст. Таким образом, силы, поддерживающие реабсорбцию (поток жидкости, поступающей в капилляры), равны силам, поддерживающим фильтрацию (поток среды, выходящей из капилляров). Следовательно, альвеолы легких остаются "сухими", что обеспечивает оптимальный газообмен. Приведенные значения сил Старлинга в легочных капиллярах представляют средние уровни для всех зон легких. В зоне 1, включающей верхушечные области, сосудистое давление ниже, чем альвеолярное, в то время как в зоне 3 (базальные области) сосудистое давление выше альвеолярного.

84) Опишите другие основные механизмы, которые изменяют суммарное перемещение жидкости через стенки капилляров в легких и других тканях (например, увеличение проницаемости капилляров).

Поскольку гидростатическое и онкотическое давление - главные физиологические детерминанты суммарного перемещения жидкости через стенки капилляров, изменения любой из этих переменных могут существенно повлиять на обмен жидкости в тканях организма.

Соответственно увеличенное гидростатическое давление в капиллярах из-за повышения венозного давления (например, при застойной сердечной недостаточности) или уменьшенное осмотическое давление коллоидов (например, низкая концентрация белка в плазме вследствие белкового голодания, цирроза печени или нефротического синдрома) способствует накоплению жидкости в периферических тканях. Увеличенная проницаемость капилляров - третий важный механизм, увеличивающий выход жидкости из внутрисосудистого пространства (первый и второй механизмы составляют увеличенное давление фильтрации и уменьшенный осмотический градиент давления коллоидов).

Среди гуморальных факторов, про которые известно, что они увеличивают капиллярную проницаемость, гистамин, кинины и субстанция P

85) Равно ли интерстициальное давление жидкости в легких этому показателю в других тканях?

Нет. Интерстициальное давление жидкости различно в разных тканях; самая низкая величина отмечается в легких (примерно - 2 мм рт.ст.), а самая высокая - в мозге (приблизительно +6 мм рт.ст.). Промежуточные значения характерны для подкожной клетчатки, печени и почек: уровень ниже атмосферного отмечается в подкожной клетчатке, составляя примерно - 1 мм рт.ст., а в печени и почках он выше атмосферного (примерно от +2 до +4 мм рт.ст.).

86) Опишите три зоны легких от верхушек к базальным отделам, в которых в положении стоя или сидя кровоток различается под воздействием гравитации.

Эти три легочные зоны включают приблизительно верхнюю, среднюю и нижнюю треть легких. В зоне 1, или в верхней области, легочные капилляры почти бескровны, потому что их внутреннее давление меньше по величине, чем внешнее, или альвеолярное давление (или почти такое же), что делает кровоток очень низким или нулевым. Теоретически зона 1 не должна иметь никакой капиллярной перфузии, так как давления соотносятся между собой следующим образом; Рд > Pa > Pv (соответственно альвеолярное, артериальное и венозное давление). В зоне 2, или средних отделах, легочный кровоток имеет промежуточную величину между самым низким, наблюдаемым в зоне 1, и большим капиллярным потоком, существующим в зоне 3. Капиллярное давление на артериальной стороне в зоне 2 превышает альвеолярное давление; последнее в свою очередь превышает капиллярное давление на венозной стороне (таким образом, Pa > Рд > Pv). В зоне 3, или в нижних отделах легких, капиллярные сосуды постоянно наполнены (в отличие от коллапса капилляров на их венозной стороне в зоне 2) и имеют высокий кровоток, так как внутреннее давление на артериальной и венозной стороне капилляров выше, чем альвеолярное давление (таким образом, Ра>Ру>Рд). Чтобы надежно измерить давление заклинивания легочных капилляров (PCWP) катетером, введенным в легочную артерию, кончик катетера должен быть помещен в зону 3. Следует ясно понимать, что использование положительного давления в конце выдоха (ПДКВ -PEEP) может превратить область легких, которая принадлежит зоне 3, в зону с характеристиками зон 1 или 2 из-за альвеолярного растяжения и коллапса сосудов, что происходит под влиянием увеличения внутригрудного давления.

Оглавление темы "Кровоснабжение органов и тканей. Сопряженные функции сосудов. Микроциркуляция (микрогемодинамика).":
1. Кровоснабжение легких. Малый круг кровообращения. Интенсивность кровотока в сосудах легкого. Миогенная, гуморальная регуляция кровотока в легочных сосудах.
2. Кровоснабжение желудочно-кишечного тракта (ЖКТ). Интенсивность кровотока в сосудах желудочно-кишечного тракта (ЖКТ). Миогенная, гуморальная регуляция кровотока в сосудах желудочно-кишечного тракта (ЖКТ).
3. Кровоснабжение cлюной железы (слюных желез). Кровоснабжение поджелудочной железы. Регуляция кровотока в сосудах желез.
4. Кровоснабжение печени. Интенсивность кровотока в сосудах печени. Миогенная, гуморальная регуляция кровотока в печени.
5. Кровоснабжение кожи. Интенсивность кровотока в сосудах кожи. Миогенная, гуморальная регуляция кровотока в коже.
6. Кровоснабжение почки (почек). Интенсивность кровотока в сосудах почки (почек). Миогенная, гуморальная регуляция кровотока в почке (почках).
7. Кровоснабжение мышц. Интенсивность кровотока в сосудах мышц. Миогенная, гуморальная регуляция кровотока в мышцах.
8. Сопряженные функции сосудов. Резистентная функция сосудов. Емкостная функция сосудов. Обменная функция сосудов.
9. Микроциркуляция (микрогемодинамика). Проницаемость капилляров. Стенки капилляров. Типы капиляров.
10. Гидростатическое давление в капиляре. Транскапиллярный обмен веществ. Линейная скорость кровотока в микроциркуляторном русле. Шунтирующие сосуды (шунтирование).

Гидростатическое давление в капиляре. Транскапиллярный обмен веществ. Линейная скорость кровотока в микроциркуляторном русле. Шунтирующие сосуды (шунтирование).

Гидростатическое давление на артериальном конце «усредненного» капилляра равно примерно 30 мм рт. ст., на венозном- 10-15 мм рт. ст. Этот показатель варьирует в различных органах и тканях и зависит от соотношения пре- и посткапиллярного сопротивления, которое и определяет его величину. Так, в капиллярах почек он может достигать 70 мм рт. ст., а в легких - только 6-8 мм рт. ст.

Транскапиллярный обмен веществ обеспечивается путем диффузии, фильтрации-абсорбции и микропиноцитоза. Скорость диффузии высока: 60 л/мин. Легко осуществляется диффузия жирорастворимых веществ (СО2, О2), водорастворимые вещества попадают в интерстиций через поры, крупные вещества - путем пиноцитоза.

Второй механизм, обеспечивающий обмен жидкости и растворенных в ней веществ между плазмой и межклеточной жидкостью,- фильтрация-абсорбция. Давление крови на артериальном конце капилляра способствует переходу воды из плазмы в тканевую жидкость. Белки плазмы, создавая онкотическое давление, равное примерно 25 мм рт. ст., задерживают выход воды. Гидростатическое давление тканевой жидкости около 3 мм рт. ст., онкотическое - 4 мм рт. ст. На артериальном конце капилляра обеспечивается фильтрация, на венозном - абсорбция. Между объемом жидкости, фильтрующейся на артериальном конце капилляра и абсорбирующейся в венозном конце, существует динамическое равновесие.

Линейная скорость кровотока в сосудах микроциркуляторного русла мала - от 0,1 до 0,5 мм/с. Низкая скорость кровотока обеспечивает относительно длительный контакт крови с обменной поверхностью капилляров и создает оптимальные условия для обменных процессов.

Отсутствие мышечных клеток в стенке капилляров указывает на невозможность активного сокращения капилляров. Пассивное сужение и расширение капилляров, величина кровотока и количество функционирующих капилляров зависят от тонуса гладкомышечных структур терминальных артериол, метартериол и прекапиллярных сфинктеров.

Процессы транскапиллярного обмена жидкости в соответствии с уравнением Старлинга (рис. 9.25) определяется силами, действующими в области капилляров: капиллярным гидростатическим давлением (Рс) и гидростатическим давлением интерстициальной жидкости (Pi), разность которых (Рс - Pi) способствует фильтрации, т. е. переходу жидкости из внутри-сосудистого пространства в интерстициальное; коллоидно-осмотическим давлением крови (Пс) и интерстициальной жидкости (Пi), разность которых (Пс - Пi) способствует абсорбции, т. е. движению жидкости из тканей во внутрисосудистое пространство, а - осмотический коэффициент отражения капиллярной мембраны, который характеризует реальную проницаемость мембраны не только для воды, но и для растворенных в ней веществ, а также белков. Если фильтрация и абсорбция сбалансированы, то наступает «старлинговое равновесие».


Своеобразие строения терминального сосудистого русла различных органов и тканей отражает и зависит от их функциональных особенностей, прежде всего от уровня обмена кислорода, интенсивности процессов метаболизма. Так, в различных тканях и органах капилляры образуют сеть определенной плотности в зависимости от их метаболической активности. На основании этих данных введено понятие «критическая толщина тканевого слоя» - наибольшая толщина ткани между двумя капиллярами, которая обеспечивает оптимальный транспорт кислорода и эвакуацию продуктов метаболизма. Чем интенсивнее обменные процессы в органе, тем меньше критическая толщина ткани, т. е. между этими показателями существует обратно пропорциональная зависимость. В большинстве паренхиматозных органов величина этого показателя составляет всего 10-30 мкм, а в органах с замедленными процессами обмена она возрастает до 1000 мкм.

Для оценки функциональной активности шунтирующих сосудов (артериовенозных анастомозов ) используют возможность перехода частиц, превышающих по размерам диаметр капилляров, из артериального отдела сосудистого русла в венозный.

Рассчитано, что кровоток через анастомозы во много раз превышает кровоток по капиллярам . Так, через анастомоз диаметром 40 мкм может пробрасываться в 250 раз больше крови, чем через капилляр такой же длины, но диаметром 10 мкм. Диаметр артериовенозных анастомозов в разных органах колеблется в широких пределах (например, в сердце - 70-170 мкм, в почках - 30-440 мкм, в печени - 100-370 мкм, в тонком кишечнике - 20-180 мкм, в легких - 28-500 мкм, в скелетных мышцах - 20-40 мкм).

Функциональная характеристика отделов системы кровообращения1. Генератор давления и расхода - сердце
2. Компрессионный отдел - аорта и крупные
артерии
3. Сосуды – стабилизаторы давления артерии
4. Резистивный отдел - артериолы,
5. Обменный отдел – капилляры
6. Шунтирующие сосуды - артерио-венозные
анастомозы,
7. Ёмкостные сосуды - вены, до 80% крови.

Перестройка кровообращения после рождения

1.
2.
3.
Включается малый круг
кровообращения
Прекращается переход крови из
правого предсердия в левое
Закрывается венозный проток

Компрессионный отдел

Резистивный отдел

1.
2.
Создание периферического
сосудистого сопротивления
Перераспределение крови и регуляция
регионарного кровообращения

Артериолы выполняют свои функции путем изменения радиуса сосудов

Свойства гладких мышц
Свойства эндотелия

10. Физиологические свойства гладких мышц

Обладают автоматией.
2. Способны к длительным
тоническим сокращениям
3. Сокращаются в ответ на
растяжение
4. Высоко чувствительны к
биологически активным веществам
1.

11. Механизм мышечного сокращения

Комплекс Са++ с кальмодулином
2. Активация киназы легких цепей
миозина
3. Фосфорилирование головки
миозина
4. Образование поперечных
мостиков
1.

12. Механизм действия БАВ

13. Сосуды иннервируются симпатическими нервами

Постганглионарные волокна выделяют
НОРАДРЕНАЛИН

14.

15.

16. Эндотелий сосудов

Саморегуляция клеточного роста и
восстановления
2. Местная регуляция сосудистого
гладкомышечного тонуса: синтез
простагландинов, эндотелинов, оксида
азота (NO)
3. Антикоагулянтные свойства поверхности
4. Реализация защитных (фагоцитоз) и
иммунных реакций (связывание иммунных
комплексов)
1.

17.

18. Микроциркуляция

Микроциркуляторное русло:
артериола, прекапилляр со
сфинктером (сфинктеры –
одиночные гладкомышечные
клетки), капилляры,
посткапилляры, венулы и
шунтирующие сосуды.

19. Микроциркуляторное русло

20. Условия обмена: 1. строение стенки, 2. скорость кровотока, 3. общая поверхность

Три вида капилляров:
A. Соматический –мелкие поры 4-5 нм.- кожа, скелетные
и гладкие мышцы
B. Висцеральный – фенестры 40-60 нм – почки,
кишечник, эндокринные железы
C. Синусоидный – прерывистая стенка с большими
просветами – селезенка, печень, костный мозг.
2. Диаметр капилляров – 2-12 мкм, длина – 750 мкм
3. Критическая толщина тканевого слоя – обеспечивает
оптимальный транспорт от 10 мкм (интенсивный обмен)
до 1000 мкм в органах с замедленными процессами
обмена.
1.

21. Три процесса переноса:

1.
2.
3.
дифузия,
фильтрация и реабсорбция
микропиноцитоз

22. Диффузия – 60л/минуту – жирорастворимые в-ва,О2, СО2

Q = S DK (С1-С2) /T
S- площадь поверхности,
DK- диффузионный
коэффициент газа,
С1-С2 -градиент концентрации,
Т - толщина барьера ткани.

23. Фильтрация

За сутки через капилляры проходит 8000
литров,
фильтруется 20,
реабсорбируется 18,
следовательно, 2 литра возвращается в
кровь через лимфатические сосуды.

24. Схема обмена жидкостью

25.

26.

Артериальная часть
Р ф = 32 25 3 + 5 = 9 мм рт.ст
Венозная часть
P реабс. = 15 25 3 + 5 = 8 мм рт.ст

27. Уравнение Старлинга

Старлинговское равновесие – это значит
процессы фильтрации и реабсорбции
уравновешены.
Pф = Pгк – Pок – Pгт + Pот

28. Регуляция количества работающих капилляров Механизм мерцания капилляров

В норме открыто (20-25%) кровь протекает
лишь по “дежурным” капиллярам
метаболическая ауторегуляция,
приспосабливает местный кровоток к
функциональным потребностям ткани.
оксид углерода, угольная кислота, АДФ, АМФ,
фосфорная и молочная кислоты расширяют
сосуды

29. Центральное венозное давление

30. Возврат крови к сердцу

1. Кинетическая энергия систолы.
2.Присасывающее действие грудной
клетки и сердца.
3.Тонус сосудистой мышечной стенки.
4.Сокращения скелетной мускулатуры периферический мышечный насос
5. Венозные клапаны, препятствующие
обратному току крови.

31. Венозные клапаны

32. Гемодинамика (гидродинамика)

Гемодинамика изучает закономерности
движения крови по сосудам:
– Сколько крови
– С какой скоростью
– С каким давлением

33. 1 параметр: МОК

УО
МОК

34. Периферическое сосудистое сопротивление

35. Току крови оказывается сопротивление

Проходимость трубки
Q
r
4
8 l
P
Сопротивление
оказывают:
Вязкость -ŋ
–Длина - l
– Просвет - r

36. Сопротивление трубки


Формула Пуазейля
8lη
R 4
πr

37. Сопротивление трубки измерить просто, сопротивление всего сосудистого русла измерить невозможно

38. Где максимальное сопротивление?

39. Общее периферическое сосудистое сопротивление (ОПСС)

R = (P1 – P2)/ Q * 1332
ОПСС в норме =
1200 – 1600 дин*сек*см-5
(При АГ – до 3000)

40. Артериальное давление

41. Артериальное давление – основной параметр гемодинамики

Взаимодействие МОК и ОПСС
создают артериальное давление
P Q R