Одна из проблем современной школы – снижение интереса к физике. Я задала себе вопрос: Какими средствами может воспользоваться учитель, чтобы сформировать у учащихся положительное отношение к предмету, вызвать у них познавательный интерес к знаниям? Можно предложить такую схему воспитания у школьников увлечения учебным предметом: от любопытства к удивлению, от него к активной любознательности и стремлению узнать, от них к прочному знанию и научному поиску.

Остановлюсь подробнее на первой стадии - удивления и любопытства: у школьников возникает ситуативный интерес, проявляющийся при демонстрации эффектного опыта, прослушивании рассказа об интересном случае из истории физики, причем его объектом является не содержание предмета, а чисто внешние моменты урока - оборудование, мастерство учителя, формы работы на уроке.

Новизна, непосредственный интерес и эмоциональная привлекательность вызывают прежде всего непроизвольное внимание. В свою очередь, непроизвольное внимание вызывает непроизвольное запоминание. Каждый учитель хорошо знает, что при проверке домашнего задания ученик, отвечая на поставленный вопрос, начинает с описания опыта, который он видел на предыдущем уроке. Зрительные образы демонстрационных опытов сохраняются в памяти и выполняют функцию ориентиров, опор, на основании которых восстанавливается остальная часть изученного учебного материала.

Я полностью согласна с психологами, которые отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается памятью учащихся значительно лучше, чем рассказ учителя о физических опытах.

Однако ученики, вспоминая демонстрационные опыты, вносят в свое описание изменения, которые обусловлены не только забыванием некоторых деталей, но и преобразованием описания в форму, более, легкую для понимания. Вспоминая, ученики выделяют детали опытов, которые представляются им наиболее значимыми и интересными. Все это свидетельствует о том, что припоминание является не простым воспроизведением, а конструктивным процессом.

Таким образом, я считаю, что демонстрация опытов развивает внимание и память учащихся на стадии эмпирического познания изучаемых явлений и закономерностей.

В этой связи предлагается использовать эффектные опыты, поскольку у учащихся возникает не только живой интерес к демонстрации явления, но и бурное обсуждение разгадки явления (проблемная ситуация). Таким образом, при показе эффектного опыта, мы убиваем сразу двух зайцев: демонстрируем физическое явление и создаем проблемную ситуацию. А в качестве "побочного эффекта" пробуждаем интерес к предмету. Поэтому, характер и форма организации учебно-познавательной деятельности учащихся: проблемно – поисковый, исследовательский и репродуктивный характер деятельности позволяет осуществить комплексное применение знаний учащихся.

Я как учитель совместно с учащимися ставила цели:

Образовательная:систематизация знаний по теме “Сила трения”: знать природу силы трения, формировать умение различать виды трения; сравнивать их в разных практических ситуациях; обосновывать необходимость увеличения и уменьшения силы трения; формировать у ребят умение осуществлять самоконтроль с помощью конкретных вопросов и использования дидактического материала.

Развивающая:совершенствовать навыки самостоятельной работы, активизировать мышление школьников, умение самостоятельно формулировать выводы, развивать речь. Развитие творческих способностей на основе практической работы. Отработка практических навыков в работе с физическим оборудованием.

Воспитательная: развитие чувства взаимопонимания и взаимопомощи в процессе совместного выполнения экспериментального задания; развитие мотивации изучения физики, используя разнообразные приёмы деятельности, сообщая интересные сведения.

В ходе такого вида деятельности у учащихся формируются способности к структурированию и систематизации изучаемого предметного содержания. Освещение темы сопровождается демонстрацией презентации с последующим обсуждением и объяснением явлений, происходящих из-за наличия силы трения. Демонстрируются способы изменения силы трения на практике. Учащиеся имеют возможность анализировать происходящее и делать выводы.

Наряду с этим, происходит развитие метапредметных УУД: коммуникативные – выражать с достаточной полнотой полнотой и точностью свои мысли, добывать недостающую информацию с помощью вопросов; регулятивные – осознавать самого себя как движущую силу своего научения, свою способность к преодолению препятствий и самокоррекции, составлять план решения задачи, самостоятельно исправлять ошибки; познавательные – уметь создавать модели для решения учебных и познавательных задач, выделять и классифицировать существенные характеристики объекта. А так же планируются результаты личностные: формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Цель:

  • познакомить с видами силы трения;
  • выяснить от чего зависит сила трения

Задача:

  • определить значение силы трения в повседневной жизни, природе.

Трение – явление, сопровождающее нас с детства, на каждом шагу, а потом ставшее таким привычным и таким незаметным.

Сила трения в сказках: “Колобок” (сила трения качения), “Репка” (сила трения покоя), “Медвежья горка” (сила трения скольжения), “Царевна лягушка” (сила трения качения).

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Виды силы трения: Fтр.качения, Fтр.скольжения, Fтр.покоя, но возможна замена одного вида трения другим (Fтр.скольжения на Fтр.качения). При помощи бруска, динамометра и двух карандашей можно продемонстрировать, что Fтр.скольжения больше, чем Fтр.качения.

Зависимость силы трения от некоторых показателей демонстрируют следующие опыты:

С помощью динамометра, бруска и набора грузов показываем, что сила трения зависит от силы нормального давления;

На место гладкой поверхности кладем шероховатый лист бумаги (сила трения зависит от материала);

Устраняем пластилин с поверхности, измеряем при этом силу трения до и после;

Используем смазку, что ведет к уменьшению силы трения;

Сила трения почти не зависит от площади опоры.

У силы трения есть свои плюсы и, к сожалению, минусы. В том случае, когда оно полезно – стараются увеличить. Если вредно – пытаются уменьшить (использование смазки, подшипников, которые уменьшают силу трения в 20-30 раз).

Вот несколько примеров. Мелодия, исходящая от скрипки существует за счет того, что смычок приводит в колебание струны. Струна под смычком всегда движется медленнее, чем смычок. Когда струна движется навстречу смычку, то сила трения скольжения тормозит струну, замедляя ее движение. А когда смычок движется по направлению струны, то сила трения скольжения наоборот “тащит” струну за собой, не давая ей отставать. Когда зимой на дорогах образовывается лед, то велика вероятность аварий, также пешеходы могут получить травмы на заледеневших тропинках. Чтобы этого избежать, можно насыпать песок на дорогу, тем самым увеличили силу трения. Польза силы трения качения в том, что катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Так происходит движение. В 1779 году французский физик Кулон установил, от чего зависит максимальная сила трения покоя. Чем тяжелее книга, лежащая на столе, чем сильнее она прижимается к столу, тем труднее ее сдвинуть. Именно за счет трения покоя все остается на своих местах: шнурки не развязываются, гвоздь держится в стене, шкаф стоит на своем месте. Можно сделать выводы о плюсах силы трения. Благодаря этой силе мы можем стоять или двигаться вперед, замедлять или ускорять движение отдельных тел.

Но, наряду с плюсами, есть еще и минусы. Человек никогда не сможет изобрести вечный двигатель, т.к. со временем любое движение прекратится из-за силы трения и приходится время от времени это движение сохранять – воздействовать на него. Трение не только тормоз для движения, это еще и главная причина изнашивания технических устройств - проблема, с которой человек столкнулся на заре цивилизации.

Леонардо де Винчи занимался многими вопросами деталей машин, трения и износа. Сила трения направленна в противоположную от приложенной силы сторону, и это приводит к совершению большой работы.

Основной характеристикой трения является коэффициент трения “мю”, который определяется материалами, из которых изготавливают поверхности взаимодействующих тел.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и др. вьющиеся растения благодаря трению могут цепляться за опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникает большая сила трения, т.к. стебли плотно прилегают к опоре. У растений, имеющие корнеплоды, такие, как морковь, свекла, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода, давление окружающей земли на него увеличивается, и сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую репу, свеклу. Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, ореха, благодаря своей шарообразной форме и малому трению качения, перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеют обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам. Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками. Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже связано с трением. У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя. Водяной жук-вертячка быстро носится на поверхности воды. Быстроте передвижения он обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной “смазкой”. При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной. При действии же органов движения у животных и человека трение проявляется как полезная сила.

Пословицы и поговорки о силе трения, сказанные людьми и взятые из жизненного опыта:

  • Скрипит, как несмазанная телега.
  • От того телега запела, что давно дегтя не ела.
  • Против шерсти не гладят.
  • Прошло дело как по маслу.
  • Хорошо смазал – хорошо поехал.
  • Живет как сыр в масле.
  • Где скрипит, там и мажут
  • Не тертая стрела в бок идет.
  • Плуг от работы блестит.
  • Три, три – будет дырка.

Опыты, демонстрирующие силу трения:

Опыт №1 . Вращение сырого и вареного яйца. Вареное яйцо вращается быстрее. В сыром яйце его желток и белок стараются сохранить неподвижное состояние (в этом проявляется их инерция) и своим трением о скорлупу тормозят его вращение.

Опыт №2. Развести в маленькой баночке марганцовку до темно-фиолетового цвета. Налить в другую банку простую воду. Затем, набрать пипеткой раствор марганцовки и капнуть в банку с высоты 1-2 сантиметра от поверхности воды. Кончик пипетки не должен колебаться. Руки должны опираться н локти. Капля, упав в воду, превращается в кольцо правильной формы, которое будет опускаться на дно банки, увеличиваясь в размере. Это объясняется тем, что когда капля упала в воду, она, встретив сопротивление, расплющилась. При движении ее вниз вследствие трения о воду, ее края завернулись. Получилось вихревое кольцо в виде баранки, вращающейся вокруг своей кольцевой оси.

Опыт №3. Положить на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимать верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшить наклон книги и закрепить ее в теком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения покоя. Достаточно щелкнуть пальцем по книге, сила трения покоя ослабнет, и карандаш поползет вниз.

Французский физик Гильом о роли силы трения: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой, или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся его устранить в машинах – и хорошо делают. Однако, это правильно лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев”.


1. Введение

Цель данной работы – изучить вопросы, связанные с возникновением трения. Эта тема, казалось бы, давно известная, остаётся по-прежнему актуальной , так как вопрос о силе трения полностью не решен ни физиками, ни математиками, тогда как трение - одна из важнейших проблем, например, для машиностроения. Задача работы – провести эксперименты, позволяющие исследовать от чего зависит сила трения. Таким образом, объектом исследования является трение.

Гипотеза : мир без трения был бы не узнаваем и ужасен. Не было бы развития цивилизации, ведь наши предки с помощью него добывали огонь . Технический прогресс при отсутствии колеса должен был стать каким-то другим. Кроме того, возможно, что трение - один из источников внутреннего тепла Земли.

Практическая значимость работы состоит в том, что она посвящена теории трения, которая до сих пор не является завершенной. Но для того, чтобы привлечь новых будущих исследователей их нужно заинтересовать проблемой. А для этого можно использовать материал данной работы.

Новизной в работе будет гипотеза об уменьшении молекулярного трения под большими горными массивами из-за большого давления. А это должно приводить к увеличению их подвижности. То есть повышать возможность землетрясений.

2. Основные вопросы теории трения

2.1. Мир без трения

Давайте вначале немного пофантазируем и представим, что было бы, если бы трение исчезло? Движущийся автомобиль не сможет остановиться, а неподвижный тронуться с места. Пешеходы упадут на асфальт и не смогут подняться. Кроме того, где пол ниже. они неожиданно окажутся голыми, так как нитки в тканях удерживаются трением. Вся мебель в комнате соскользнёт в один угол. Тарелки и стаканы также будут соскальзывать со стола. Гвозди и шурупы выскочат из стен. Ни одну вещь нельзя будет удержать в руках. Взять и перевернуть страницу книги тоже станет проблемой .

Интересно придумано и рассказано о мгновенном сильном уменьшении трения в книге для детей «Остров неопытных физиков» . «Все части автомобиля, основанные на использовании трения – тормоза, сцепление, приводной ремень, - перестали работать, а те части, для которых трение было помехой стали двигаться ещё быстрее. Поэтому двигатель продолжал работать и даже увеличил число оборотов – трение в цилиндрах и подшипниках уже не тормозило его…». Но автомобиль не мог двигаться, так как исчезло трение между шинами и асфальтом. Таким образом, колёса вертелись, а машина стояла месте. Описание такого же мира дано в стихотворении:

В вот, что пишет известный швейцарский физик, лауреат Нобелевской премии Шарль Гийом: «Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиной с каменную глыбу или малы, как песчинка, никогда не удержится одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкому».

2.2. Две причины возникновения трения

Два самых главных изобретения – колесо (рис.1) и добывание огня (рис.2) - связаны именно со стремлением уменьшить или увеличить эффект трения.

Трение - следствие многих причин. Главные из них - две. Во-первых, зазубрины одной поверхности цепляются за шероховатости другой. Это так называемое геометрическое трение (рис.3). Во-вторых, молекулярное трение , когда поверхности обоих тел достаточно гладкие. В этом случае начинает сказываться притяжение между их молекулами (рис.4). Наука, изучающая трение называется трибологией (от греч."трибос"- трение). Трение - механическое сопротивление движению, возникающее в месте касания двух прижатых друг к другу тел при их перемещении одного относительно другого. Сила сопротивления F , направленная противоположно перемещению тела, называется силой трения. Законы сухого трения сформулировал в 1781 году Ш. О. Кулон (1736 - 1806). Они были определены опытным путём. Но ещё задолго до этого, среди бесчисленных научных и творческих достижений Леонардо да Винчи была и формулировка законов трения. Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке. Этот коэффициент определяет силу трения для любой пары контактирующих материалов. Обозначается греческой буквой μ [мю]. До сих пор формула:

F тр =µР,

где Р - сила прижатия или вес тела , a F тр - сила трения , является главной формулой. Её вариант:

F тр =μ N ,

где N – сила реакции опоры . . N =Р. Чертёжи, на которых изображены все силы, действующие на брусок, см. на рис. 5.

Коэффициент трения зависит не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Более точно формулу можно записать, учитывая молекулярное трение:

F = μ (N + S p 0 ),

где р 0 – добавочное давление , вызванное силами молекулярного притяжения.

2.3. Виды трения

Существует трения покоя, скольжения и качения. Выяснилось, что обычно сила трения скольжения при медленном движении меньше силы трения покоя (то есть страгивания с места). Кулон изучал именно силу трения при медленном движении тел и установил, что эта сила не зависит от величины скорости, а только от направления движения. Самым маленьким является трение качения. Поэтому при перемещении тяжелых предметов (корабли по суше, каменные блоки для строительства) люди подкладывали под них катки (обычные брёвна). Круглый предмет (например, бочку) легче катить, чем волочить. На этом же основано применение в технике подшипников: шариковых и роликовых (рис. 6).

Другой пример из практики, о различиях в применении видов трения: если автомобиль тормозит скольжением (юзом), то тормозной путь длиннее, чем при торможении качением, когда колесо вращается и своей поверхностью хорошо цепляется за дорожное покрытие. Это должен помнить и водитель, и пешеходы, переходящие улицу!

3. Современная картина трения

Как образно выразился один из основателей науки о трении, Ф. Боуден, «наложение двух твердых тел одного на другое подобно наложению перевернутых швейцарских Альп на австрийские Альпы – площадь контакта оказывается очень малой» (рис.7). Фотографии различных поверхностей, полученные с помощью микроскопов, подтверждают сравнение с горами (рис. 8,9). При попытке движения остроконечные «горные пики» цепляются друг за друга и сминают свои вершины. При попытке сдвига в горизонтальном направлении один пик начинает прогибать другой, то есть сначала попытается сгладить дорогу (рис. 10 а), а потом уже скользить по ней (рис. 10 б). Если тянуть тело динамометром с постоянной скоростью, то окажется, что само тело при этом движется рывками. Д вижение оказывается колебательным: залипание и скольжение поочерёдно сменяют друг друга.

4. Вибрационное сглаживание

Иногда бывает важно исключить движение рывками. Например, робот- сварщик должен плавно вести сварочный аппарат вдоль сварочного шва. Если он будет дёргаться, то в одном месте будет перегрев и свариваемые пластины искорёжатся, а в другом - сварка не произойдёт совсем, так как аппарат слишком быстро проскочит вперёд. Одним из путей борьбы с этими рывками может служить вибрационное сглаживание. Под действием быстрых вибраций сухое трение начинает напоминать жидкое, так как частицы из-за тряски хуже дотрагиваются друг до друга и сыпучий материал из твердых частиц начинает себя вести как жидкий. И в частности может легко перемещаться. И здесь тоже могут быть негативные примеры. Пересекая Ладожское озеро в осенние бурные дни, некоторые корабли, перевозившие зерно, начинали сильно раскачиваться с борта на борт и опрокидывались. Выяснилось, что проектировщики считали, будто зерно в трюме будет лежать неподвижно за счёт сухого трения, сцепляющего отдельные зерна между собой. Но вибрации делали сыпучий материал подобным жидкому. Зерно начинало вести себя как жидкость, наваливаясь при перевозке на наклонный борт корабля, вызывая его опрокидывание. Как только эффект был понят, трюмы поделили на отсеки, как в тех кораблях, что перевозят настоящие жидкости .

5. Жидкое трение

При движении твёрдого тела в жидкости или газе на него действует сила сопротивления среды, которую можно считать особым видом силы трения. Эта сила направлена против движения тела и тормозит его. Главная особенность силы сопротивления состоит в том, что она возникает только при движении тела. Она зависит от его скорости тела, а также от формы и размеров. Поэтому, например, автомобилям придают обтекаемую форму, особенно гоночным. Кроме того сила сопротивления зависит от состояния поверхности тела и вязкости среды, в которой оно движется. В жидкостях и газах силы трения покоя нет .

Жидкое трение намного меньше сухого, так как молекулы жидкости могут легко перемещаться относительно друг друга. Поэтому для уменьшения трения успешно применяют смазку.

5.1. Износ. Смазка

В результате трения детали механизмов истираются и поверхности разрушаются. Одним из методов борьбы с износом является смазка. При этом обе трущиеся поверхности покрываются защитными пленками из молекул смазки. Коэффициент трения снижается. Это происходит потому, что м олекулы жидкости притягиваются друг к другу слабее, по сравнению с молекулами твёрдого тела. Следовательно, при наличии смазки между трущимися поверхностями они легко скользят относительно друг друга. В настоящее время разрабатываются препараты, позволяющие в процессе эксплуатации, не производя полной разборки узлов и агрегатов, частично восстанавливать изношенные поверхности трения с одновременным повышением их износостойкости .

5.2. Аквапланирование

Аквапланирование выглядит так: на мокрой дороге шина скользит по воде, как глиссер, то есть контакт колеса с дорогой исчезает. Автомобиль теряет управляемость. Исследования выявили, что по мере роста скорости перед колесом появляется водяной валик, а снизу появляется водяной клин. С ростом скорости эффект нарастает. При этом машина движется не по асфальту, а как бы «плывёт» по воде (рис. 11).

Помимо изучения теоретического материала авторы работы провели ряд экспериментов, позволяющих самостоятельно определять F тр и зависимость коэффициента трения от тех или иных физических величин или условий . Результаты см. в приложении.

    Сравнение силы трения покоя, скольжения и качения (табл.1). Фото.1,2.

    Исследование зависимости силы трения от площади контакта. Для этой цели брусок во втором опыте положили на другой бок (табл.2). Фото. 3.

    Зависимость силы трения от нагрузки (веса бруска и грузов) или иначе от силы реакции опоры N (табл. 3).

    Зависимость от рода вещества и условий обработки двух поверхностей (табл. 4-7).

    Сида трения F тр (или коэффициент трения  ) практически не зависит от скорости при малых относительных скоростях движения соприкасающихся поверхностей. Но согласно изученным теоретическим материалам с ростом скорости сила трения слегка уменьшается.

Общие выводы:

    Сила трения F тр практически не зависит от площади контакта и от скорости (при малых скоростях).

    Сила трения F тр зависит от нагрузки (N =Р), от рода вещества и условий обработки поверхностей. Обычно значения коэффициентов трения лежат в пределах от 0,1 до 1,05 (0,1 1,05).

    Значение силы трения в порядке уменьшения: трение покоя, скольжения, качения. F тр покоя  F тр ск.  F тр кач.

7. Региональный компонент

В сентябре 2002 в Северной Осетии сошёл ледник Колка. Ледово-грязе-каменный поток продвинулся почти на 20 км по долине реки Геналдон со скоростью порядка 150-200 км/ч, разрушив строения, базы отдыха, линии электропередач. Основные предположения о причинах этой катастрофы заключаются в том, что произошла внезапная подвижка, обусловленная комплексом причин сейсмического, вулканического и метеорологического характера. Данный ледник относится к категории пульсирующих. На момент катастрофы он ещё не «созрел» для падения. Это подтверждалось данными съёмок из космоса. Таким образом, силы трения покоя удерживали всю массу ледника, Но в результате внешнего воздействия типа удара или взрыва на всю массу снега произошёл процесс, аналогичный вибрационному сглаживанию. Схема процесса: удар, частицы приподнялись вверх, нагрузка Р уменьшилась и, следовательно, трение тоже стало меньше.

При движении одних тел по поверхности других возникает трение. Это происходит, когда шероховатости одной поверхности цепляются за шероховатости другой или когда гладкие поверхности начинают прилипать друг к другу за счет межмолекулярного притяжения. Но, как известно, между молекулами существует не только взаимное притяжение. Если молекулы окажутся слишком близко друг к другу, то они будут отталкиваться. Гипотеза состоит в следующем: очень тяжелые литосферные плиты с материками и горными системами оказывают на нижележащие слои настолько огромное давление, что начинает сказываться отталкивание молекул. Это приводит к дополнительной подвижности нагруженных областей плиты, по сравнению с менее нагруженными и, следовательно, менее подвижными окраинами. Результатом это будет невозможность движения всего комплекса, как единого целого. В таком случае появятся дополнительные нагрузки отдельных областей, что может приводить к землетрясениям, снимающим возникающие механические напряжения.

9. Заключение

Только в США над данной темой в настоящее время работают 1000 исследователей, а в мировой науке публикуется более 700 статей ежегодно. Но как остроумно подметил известный физик Р. Фейнман - все наши измерения для определения коэффициентов трения фактически являются рассмотрением случаев трения "грязь по грязи". Микроскопы различных конструкций показывают сложность проблемы. На рис.11 представлен атомно-силовой микроскоп. Даже для него существует проблема, которая состоит в том, что на воздухе поверхность образца покрывается парами воды толщиной до 20-30 молекул. Таким образом, данная тема позволяет работать над ней ещё долгие годы многим исследователям. И авторам этой работы также удалось не только провести стандартные эксперименты и убедиться в точности уже известных сведений о силе трения, но и высказать свою научную гипотезу о роли молекулярного трения.

10. Литература

    Агаян В. Дазен Н. Что произойдет, если исчезнет трение?// Квант. №5. 1990.

    Домбровский К. И. Остров неопытных физиков. – М.: Детская литература, 1973.

    Первозванский А.А. Трение - сила знакомая, но таинственная.//Соросовский Образовательный Журнал. №2.1998.

    Перышкин А.В. Физика – 7. – М..: Дрофа, 2008.

    Матвеев А. Трибоника или капля смазки.// Юный техник, №1.1987.

    Кравчук А.С. Трение."Современное естествознание″,т.З.М.:Магистр -Пресс. 2000.

7. Солодушко А.Д. Эксперимент при изучении силы трения.//Физика в школе. №5.2001

Сила трения.

Урок-эксперимент. 7 класс. Базовый уровень.

Учитель: Леснова Е.Ю.

Цель : ознакомить учащихся с явлением трения. Экспериментально установить от чего зависит эта сила. Продолжить формирование умений пользоваться приборами, анализировать и сравнивать результаты опытов.

Оборудование: динамометр, доска – с одной стороны гладкая, с другой шероховатая, брусок деревянный с крючками, набор грузов, кювета с водой, тележка на колесах.

Класс разбивается на 4 группы. Каждой группе выдаются карточки с заданием. На выполнение каждого задания отводится 2 минуты. Если группа не справляется с заданием, учитель предлагает подсказки. Выводы по эксперименту записываются в тетрадь.

План урока

Изучение нового материала, систематизация изученного.

    Рефлексия.

домашнее задание

Сообщение учителя

Заполнение таблицы

Проведение опытов, объяснение их результатов.

Запись выводов в тетради.

Ответы на вопросы. Запись домашнего задания.

Задания группам.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с двумя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в сосуде. Сравните показания динамометра. Сделайте вывод.

Ход урока.

1 .Мотивация . Любому открытию сопутствует опыт, талант исследователя и даже случай. Сегодня на уроке также попытаемся совершить небольшие, но самостоятельные открытия. Работаем в группах. Правила записаны на доске.

2 . Изучение нового материала . учитель толкает деревянный брусок по деревянной доске.

Что произошло со скоростью бруска? Почему меняется скорость бруска? Под действием какой силы тело остановилось? Это сила трения и её мы будем изучать на уроке.

Продолжим заполнение таблицы, пользуясь параграфом №24. на работу отвожу 8минут.

направление

Способ измерения

Графическое изображение

Причины появления силы

Проверяется заполнение таблицы-3мин.

Учитель объясняет, что есть различные виды трения: сила трения скольжения, качения, сухого трения по поверхности, жидкого трения.

Работа в группах по заданиям.

После обсуждения итоги опытов обсуждаются и записываются в тетрадь.

3.Рефлексия.

А сейчас каждый выскажет свое отношение к уроку, начиная свое высказывание со слов:

1. самые важные выводы о силе трения – это

2. а вы знаете, что сегодня на уроке я научился….

3. больше всего мне сегодня запомнилось….

4. самым интересным было …

Если человек своим трудолюбием достигает истины в чем-либо, то это и есть его открытие.

Д/З: прочесть записи в тетради, привести примеры полезного и вредного трения.

Задание 1.

Задание 2.

Задание 3.

Задание 4.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Подсказка №1 (К заданию 1)

Подсказка №2 (К заданию 1)

Подсказка №1 (К заданию 2)

Подсказка №2 (К заданию 2)

Подсказка №1 (К заданию 3)

Подсказка №2 (К заданию 3)

Подсказка №1 (К заданию 4)

Измерьте модуль силы трения скольжения при разных площадях соприкасающихся поверхностей.

Подсказка №2 (К заданию 4)

1.С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности доски, чтобы он соприкасался с доской большей площадью.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности доски, чтобы он соприкасался с доской меньшей площадью.

КАК РАБОТАТЬ В ГРУППЕ

    своих сил.

    Выступать от имени группы почетно.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

КАК РАБОТАТЬ В ГРУППЕ

    Будь добросовестным по отношению к товарищам, работай в полную меру своих сил.

    Слушайте каждого члена группы внимательно, не перебивая.

    Говорите коротко, ясно, чтобы все могли высказаться

    Поддерживайте друг друга, несмотря на интеллектуальные разногласия.

    Отвергая предложенную идею, делайте это вежливо и не забывайте предлагать альтернативу.

    Если никто не может начать говорить, начинайте по часовой стрелке от капитана (координатора)

    Выступать от имени группы почетно. Это делает не камикадзе, а подготовленный все группой ее полномочный представитель.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 4.

Сравните модуль силы трения скольжения от площади соприкасающихся поверхностей.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Задание 1.

Выясните, от чего и как зависит модуль силы трения скольжения.

Задание 2.

Сравните при одинаковых массах тел модули сил трения скольжения и качения.

Задание 3.

Сравните при одинаковых массах тел модули сухого и жидкого трения скольжения.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 1)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с тремя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в кювете. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 1)

Выясните, как зависит модуль силы трения от рода поверхностей и силы давления.

Подсказка №2 (К заданию 1)

1. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок с тремя грузами сначала по гладкой поверхности доски, затем по шероховатой. Сравните показания динамометра. Сделайте вывод.

2. С помощью горизонтально расположенного динамометра равномерно перемещайте деревянный брусок по шероховатой поверхности доски – сначала с одним грузом, затем с двумя, тремя. Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 2)

Измерьте модуль силы трения скольжения и модуль силы трения качения.

Подсказка №2 (К заданию 2)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения качения, равномерно перемещая тележку на колесиках с шестью грузами внутри.

2. Уберите колеса и измерьте силу трения скольжения, перемещая тележку без колес (с теми же грузами). Сравните показания динамометра. Сделайте вывод.

Подсказка №1 (К заданию 3)

Выясните, как зависит модуль силы трения при перемещении деревянного бруска по твердой и жидкой поверхности.

Подсказка №2 (К заданию 3)

1. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по твердой поверхности.

2. С помощью горизонтально расположенного динамометра сначала измерьте силу трения, равномерно перемещая брусок по поверхности жидкости в кювете. Сравните показания динамометра. Сделайте вывод.

направление

Способ измерения

Графическое изображение

Причины появления силы


Актуальность: Работа предназначена для формирования мировоззрения о реальной действительности. Ответы на многие важные вопросы, связанные с движением тел, дают законы трения. Актуальность темы в том, что она связывает теорию с практикой, раскрывает возможность объяснения природы, применение и использование изученного материала. Данная работа позволяет развивать творческое мышление, умение приобретать знания из различных источников, анализировать факты, проводит эксперименты, делать обобщения, высказывать собственные суждения, задумываться над загадками природы и искать тропинку к истине.




Проследить исторический опыт человечества по использованию и применению этого явления; выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие закономерности и зависимости силы трения; проделать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей.Задачи:






Коси, коса, пока роса, роса долой – и ты домой. Не подмажешь, не поедешь. Пошло дело, как по маслу. Без мыла в душу влезет. Кататься, как сыр в масле. От того телега запела, что давно дёгтя не ела.Пословицы объясняются существованием трения и использованием смазки для его уменьшения.




Тихая вода подмывает берега.Между отдельными слоями воды, текущей в реке, действует трение, которое называется внутренним. В связи с этим, скорость течения воды на разных участках поперечного сечения русла реки неодинакова: самая большая - в середине русла, самая маленькая - у берегов. Сила трения не только тормозит воду, но и действует на берег, вырывая частицы грунта и, тем самым, подмывая его.






































3. История изучения трения Леонардо да Винчи Эйлер Леонард Амонт Кулон Шарль Огюстен де


Год Имя ученого ЗАВИСИМОСТЬ модуля силы трения скольжения от площади соприкасающихся тел от материала от нагрузки от относительной скорости движения трущихся поверхностей от степени шероховатости поверхностей 1500 Леонардо да Винчи Нет Да НетДа 1699Амонтон Нет Да Нет 1748 Леонард Эйлер Нет Да 1779Кулон Да 1883Н.П.Петров НетДа




Вывод: Сила трения скольжения зависит от нагрузки, чем больше нагрузка, тем больше сила трения. Результаты экспериментов: 1. Зависимость силы трения скольжения от нагрузки. m (г) F тp (Н)0,50,81,0





Когда завязываем пояс Без трения все нитки выскальзывали бы из ткани. Без трения все узлы бы развязались. Без трения нельзя бы было ступить и шагу, да и, вообще, стоять. Трение принимает участие там, где мы о нем даже и не подозреваем Заключение Когда шьем Когда ходим



Мы выяснили,что человек издавна использует знания о явлении трения,полученные опытным путем. Нами была создана серия экспериментов, помогающих понять и объяснить некоторые трудные наблюдения. Сила трения возникает между соприкасающимися поверхностями. Сила трения зависит от рода соприкасающихся поверхностей. Сила трения не зависит от площади трущихся поверхностей. Сила трения уменьшается при замене трения скольжения трением качения, при смазывании трущихся поверхностей. Выводы по результатам работы:

22.04.2016 09:30

Название работы:

МБОУ «ООШ №4»

Город: г.Троицк

Актуальность данной темы:

Цель моей работы:

Задачи:

Методы исследования:

Объект исследования:

Предмет исследования:

Природа силы трения - электромагнитная. Это означает, что причиной её возникновения являются силы взаимодействия между частицами, из которых состоит вещество. Второй причиной возникновения силы т


«Проект Сила трения»

Управление образования администрации города Троицка

Городская научно-исследовательская конференция

учащихся 5-8 классов муниципальных образовательных учреждений

«Первые шаги в науку»

Исследование коэффициента трения обуви

о различную поверхность

Работу выполнил:

ученик МБОУ «ООШ № 4»

Буторин Глеб,7 класс

Руководитель: учитель физики

Коваленко Инна Сергеевна

Троицк, 2015 год

Введение

Научная статья

Теоретическая часть

Практическая часть

Опыт 1. Определение коэффициентов трения и зависимости силы трения от материалов поверхностей.

Заключение

Список используемой литературы

Аннотация

Цель научной работы:

Зная коэффициент трения материала подошвы о различную поверхность, можно подобрать оптимальный вариант приобретения обуви. Методы, использованные в работе: анкетирование, физический эксперимент, математический расчет, анализ результатов. Проведя опыт, я сделал вывод, что наибольший коэффициент трения у подошвы, сделанной из полиуретана, затем - резина, каучук, а наименьший коэффициент - у пластика. Из этого следует, что при покупке обуви следует учитывать особенности подошв и погодные условия, в которых вы будете носить обувь.

    Введение

Актуальность

В зимнее время, когда на улице гололед, происходит очень много падений и травм.

Поэтому очень важно при покупке обуви учитывать особенности подошв и погодные условия, в которые вы будете носить данную обувь. В этом и заключается актуальность.

Проблема

Цель работы

Исследование трения подошв обуви, изготовленных из разных материалов о различные поверхности и определение наиболее практичных материалов для их изготовления.

Задачи:

1. Изучить теоретические основы сухого трения.

2. Провести анкетирование среди учащихся для выявления наиболее популярных производителей обуви, уровня осведомленности о материале подошвы и влияния материала подошвы на трение при ходьбе.

3. Измерить коэффициент трения скольжения материала обувной подошвы о различную поверхность.

4. Провести анализ полученных результатов измерений и выявить наиболее приемлемые варианты эксплуатации обуви.

Методы исследования

1. Анкетирование.

2. Физический эксперимент.

3. Математический расчет.

4. Анализ результатов.

Объект исследования

Предмет исследования

Гипотеза

II . Научная статья

1.Теоретическая часть

Сопротивление движению возникает при скольжении одного тела по поверхности другого. Если соприкасаются твёрдые поверхности или твёрдые прослойки между телами (плёнки окислов, полимерные покрытия), трение называют сухим.

Трение принимает участие (и притом весьма существенное) там, где мы о нём даже не подозреваем. Но не надо думать, что трение всегда препятствует движению – часто оно ему способствует.

Особенности сил трения:

Возникают при соприкосновении;

Действуют вдоль поверхности;

Всегда направлены против направления движения тела.

Что определяет величину силы сухого трения? Повседневный опыт свидетельствует: чем сильнее прижать поверхности тел друг к другу, тем труднее вызвать их взаимное скольжение и поддерживать его (например, лист бумаги, вложенный между страницами лежащей на столе толстой книги, проще вытащить из верхней части, чем из нижней). Прижимающая сила, действующая со стороны соседнего тела на трущуюся поверхность, перпендикулярна ей и называется силой нормального давления.

F тр = µN ; N = F тяж

µ - коэффициент трения – определяется шероховатостью соприкасающихся поверхностей; для более гладких поверхностей он меньше. Например, после удара хоккейной клюшкой скользящая шайба быстрее останавливается на деревянном полу, чем на льду.

2. Практическая часть

№ вопроса

Количество

%, процент от общего числа

«Юничел»- 5

«Монро» - 8

«Карри» - 7

«Обувь для всех» - 6

Российские производители - 6

Производитель неизвестен - 22

Анкета

Следующим этапом работы было измерение коэффициента трения скольжения обувных подошв при взаимодействии с различными поверхностями.

3. Опыт 1

Опыт проводился в магазинах и в домашних условиях условиях. Опыт заключался в следующем: прикрепленную к динамометру обувь я тянул равномерно вдоль различных поверхностей, снимал показания динамометра в таком положении, а также измерял силу тяжести данной обуви;

Приборы и материалы, используемые в опыте:

3.Динамометр.

Порядок проведения опыта :

Трение о ламинат

Фирма обуви

материал подошвы

материал поверхности

F тяж., Н

(средн.значение)

F тр., Н (средн.значение)

коэффициент трения μ

Обувь для всех

полиуретан

Юничел (пластик)

Обувь для всех (полиуретан)

Карри (каучук)

Монро(резина)

Подсчет коэффициента трения при трении обуви о ламинат: µ=

Пластик µ=1,03 Н: 2,6Н=0,39

Полиуретан µ=1,46 Н:2,4Н=0,6

Каучук µ=1,1Н:2,2 Н=0,5

Резина µ=1,4 Н:3,3 Н=0,42

Трение о цемент

Фирма обуви

материал подошвы

материал поверхности

F тяж., Н

(средн.значение)

F тр., Н (средн.значение)

коэффициент трения μ

Обувь для всех

полиуретан

Юничел (пластик)

Обувь для всех (полиуретан)

Карри (каучук)

Монро (резина)

Подсчет коэффициента трения при трении обуви о цемент: µ=

Пластик µ=0,46 Н: 2,6Н=0,18

Полиуретан µ=0,7 Н:2,4Н=0,3

Каучук µ=0,6Н:2,2 Н=0,27

Резина µ=0,83Н:3,3 Н=0,25

Трение о ковёр

Фирма обуви

материал подошвы

материал поверхности

F тяж., Н

(средн.значение)

F тр., Н (средн.значение)

коэффициент трения μ

Обувь для всех

полиуретан

Юничел (пластик)

Обувь для всех (полиуретан)

Карри (каучук)

Монро(резина)

Подсчет коэффициента трения при трении обуви о ковер: µ=

Пластик µ=1,6 Н: 2,6Н=0,62

Полиуретан µ=2,4 Н:2,4Н=1

Каучук µ=1,76Н:2,2 Н=0,8

Резина µ=2,6Н:3,3 Н=0,78

1. Все опрошенные респонденты знают о влиянии материала подошвы на трение при ходьбе, но большинство из них не интересуется при покупке обув материалом подошвы.

2. Значение коэффициента трения материала подошв популярных фирм - производителей соответствует допустимым значениям.

1. Все опрошенные респонденты знают о влиянии материала подошвы на трение при ходьбе, но большинство из них не интересуется при покупке обуви материалом подошвы.

Наибольшим значением из полиуретана, каучука и резины

Идеального варианта можно предложить обувь на каучуковой и полиуретановой подошве.

III . Заключение

IV . Список литературы:

1. Аксёнова М., Володин В. Энциклопедия «Физика»: «Аванта», 2005.

2. С.В.Громов, Н.А.Родина «Физика»: Москва «Просвещение», 2000.

3. Н.М. Шахмаев, С.Н. Шахмаев, Д.Ш. Шодиев «Физика»: Москва «Просвещение», 1995.

4. А.В. Пёрышкин, Е.М. Гутник «Физика»: Москва «Дрофа», 2003.

5. О.Ф.Кабардин «Физика. Справочник для старшеклассников»; АСТ- ПРЕЕС, Москва, 2005.

Просмотр содержимого документа
«тезисы Сила трения»

Название работы: Исследование коэффициента трения обуви о различную поверхность

Общеобразовательное учреждение: МБОУ «ООШ №4»

Город: г.Троицк

Здравствуйте, уважаемые члены жюри и участники конференции. Разрешите представить работу на тему: «Исследование коэффициента трения о различную поверхность» Актуальность данной темы: В зимнее время, когда на улице гололед, происходит очень много падений и травм. Поэтому очень важно при покупке обуви учитывать особенности подошв и погодные условия, в которые вы будете носить данную обувь. В этом и заключается актуальность.

Проблемой исследования было, то что при покупке обуви мало кто обращает внимание на материал, из которого изготовлена подошва и не учитывает коэффициент трения обуви о различные поверхности.

Цель моей работы: Исследование трения подошв обуви, изготовленных из разных материалов о различные поверхности и определение наиболее практичных материалов для их изготовления.

Задачи:

1. Изучить теоретические основы сухого трения.

2. Провести анкетирование среди учащихся для выявления наиболее популярных производителей обуви, уровня осведомленности о материале подошвы и влияния материала подошвы на трение при ходьбе.

3. Измерить коэффициент трения скольжения материала обувной подошвы о различную поверхность.

4. Провести анализ полученных результатов измерений и выявить наиболее приемлемые варианты эксплуатации обуви.

Методы исследования: Анкетирование, физический эксперимент, математический расчет, анализ результатов.

Объект исследования: Зимняя обувь на резиновой, полиуретановой, каучуковой и пластиковой подошве, которая продается в магазинах нашего города.

Предмет исследования:

Гипотеза, которая была выдвинут:

Природа силы трения - электромагнитная. Это означает, что причиной её возникновения являются силы взаимодействия между частицами, из которых состоит вещество. Второй причиной возникновения силы трения является шероховатость поверхности. Из-за неровностей поверхности касаются друг друга только в отдельных точках, находящихся на вершинах выступов. Здесь молекулы соприкасающихся тел подходят на расстояния, соизмеримые с расстояниями между молекулами, и сцепляются. Образуется прочная связь, которая разрывается при нажиме на тело. При движении тела связи возникают постоянно и рвутся. Выступающие части поверхностей задевают друг за друга и препятствуют движению тела. Именно поэтому для движения по гладким (полированным) поверхностям требуется прикладывать меньшую силу, чем для движения по шероховатым.

Сила трения, действующая вдоль поверхности соприкосновения твёрдых тел, направлена против скольжения тела.

Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, куда их поставили. Блюда, стаканы, поставленные на стол, остаются неподвижными без особых забот с нашей стороны, если только дело не происходит на пароходе во время качки.

Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиной с каменную глыбу или малы, как песчинки, никогда не удержится одно на другом. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкой капли.

Что определяет величину силы сухого трения?

Повседневный опыт свидетельствует: чем сильнее прижать поверхности тел друг к другу, тем труднее вызвать их взаимное скольжение и поддерживать его.Прижимающая сила, действующая со стороны соседнего тела на трущуюся поверхность, перпендикулярна ей и называется силой нормального давления.

В 1781 году Шарль Кулон, изучая трение деталей и веревок, которые в то время были существенными частями механизмов, экспериментально становил, что сила трения F ТР прямо пропорционально прижимающей силе N :

F тр = µN ; N = F тяж

Коэффициент пропорциональности µ - коэффициент трения – определяется шероховатостью соприкасающихся поверхностей; для более гладких поверхностей он меньше.

С целью выявления наиболее популярных производителей обуви и уровня осведомленности о свойствах материала подошвы и влияния материала подошвы на трение при ходьбе было проведено анкетирование среди преподавателей и учащихся нашей школы.

В анкетировании приняли участие 54 учащихся и преподавателей. При обработке данных анкетирования выяснилось, что наиболее популярными производителями обуви являются «Монро» (14,8%), «Карри» (13%), «Обувь для всех» (11%), «Юничел» (9,3%). Многие (40,7 % анкетируемых) не знают производителей обуви, т. к. приобретают обувь на рынках, зачастую, кустарного производства. Все анкетируемые (100 %) знают о том, что материал подошвы существенно влияет на трение при ходьбе, но при покупке обуви мало кто интересуется, из какого материала изготовлена подошва (78 %). На вопрос об осведомленности о физических свойствах материала подошвы 90,7% ответили отрицательно.

Цель проводимого опыта состоит в исследовании зависимости силы трения подошвы обуви о различную поверхность от силы давления и материалов поверхностей, определение коэффициентов трения.

Для проведения данного опыта использовал следующие приборы и материалы:

1.Обувь с резиновой подошвой, полиуретановой, пластиковой и каучуковой подошвой.

2.Ковровая, цементная поверхности и ламинат.

3.Динамометр.

Следует учитывать, что если подошва называется каучуковой, то она не состоит на 100% из каучука, она содержит множество других элементов в своем составе, но содержание каучука в ней преобладает. Также и с резиновой, пластиковой и полиуретановой подошвами.

Опыт проводил в следующем порядке:

    Измерил силу тяжести, действующую на сапог с резиновой подошвой. Для этого подвесил его к динамометру.

    Положил этот сапог с резиновой подошвой на ковровую поверхность и протянул его с равномерной скоростью по ковру приблизительно около метра, сняв показания динамометра в этом положении.

    Повторил опыт, подсчитал среднее значение силы трения для получения более точных результатов, вычислил коэффициент трения.

    Протянул сапог по цементной, деревянной поверхностям и ламинату и снял показания динамометра.

    Повторил опыты и подсчитал среднее значение силы трения для получения более точных результатов, вычислил коэффициент трения.

    Полученные данные занес в таблицы.

Таким образом, проведя опыт, я сделал вывод, что наибольший коэффициент трения у подошвы, сделанной из полиуретана, затем каучука и резины, а наименьший коэффициент у пластика. Из этого следует, что при покупке обуви следует учитывать особенности подошв и погодных условий, в которых вы будете носить обувь. В зимнее время лучше покупать обувь с полиуретановой подошвой, так как она имеет наибольший коэффициент трения по различным поверхностям (видно из диаграммы), это поможет избежать падений и травм в зимнее время, когда на улице гололед. Также полиуретан обладает хорошей устойчивостью к различным температурам и прочностью. Не желательно покупать обувь с пластиковой подошвой в зимнее время.

Спасибо за внимание!


«Сила трения 1»


Работу выполнил:

Ученик МБОУ «ООШ №4»

Буторин Глеб, 7 класс

Руководитель: учитель физики

Коваленко Инна Сергеевна





Цель работы:


3. Измерить коэффициент трения скольжения материала обувной подошвы о различную поверхность.




1. Анкетирование.

2. Физический эксперимент.

3. Математический расчёт.

4. Анализ результатов.


Трение




Шарль Кулон

День рождения : 14.06 . 1736 года

Дата смерти: 28.08 . 1806 года


F = µN,

где N = mg

µ- коэффициент пропорциональности

или коэффициент трения



Номер вопроса

Количество

%, процент от общего числа

«Юничел»- 5

«Монро» - 8

«Обувь для всех» - 7

«Карри» - 6

Российские производители - 6

Производитель неизвестен - 22

1. Обувь каких производителей вы носите?

2. Знаете ли вы, что материал подошвы существенно влияет на трение при ходьбе?

3. При покупке обуви интересуетесь ли вы, из какого материала изготовлена подошва обуви?

4. Знаете ли вы о физических свойствах и характеристиках различных материалов для изготовления подошв?



С помощью полученных результатов подсчитал коэффициенты трения различной обуви о разную поверхность.


F = µN,

где N = mg

µ- коэффициент пропорциональности

или коэффициент трения


Трение о ламинат

Фирма обуви

материал подошвы

Обувь для всех

материал поверхности

(средн.значение)

полиуретан

F тр., Н (средн.значение)

коэффициент трения μ


Подсчёт среднего значения силы трения о ламинат

Юничел (пластик)

Обувь для всех (полиуретан)

Монро(резина)


Юничел (пластик) μ

Обувь для всех (полиуретан)

Карри (каучук)

Монро (резина) μ



Трение о цемент

Фирма обуви

материал подошвы

материал поверхности

Обувь для всех

(средн.значение)

полиуретан

F тр., Н (средн.значение)

коэффициент трения μ


Юничел (пластик)

Обувь для всех

(полиуретан)

Карри (каучук)

Монро (резина)


Юничел (пластик)

Обувь для всех (полиуретан)

Карри (каучук)

Монро (резина)



Трение о ковёр

Фирма обуви

материал подошвы

Обувь для всех

материал поверхности

полиуретан

F тр., Н (средн.значение)

коэффициент трения μ




2. Материал подошвы существенно влияет на значение коэффициента трения. Наибольшим значением коэффициента трения скольжения обладает подошва, изготовленная из полиуретана , каучука и резины , а наименьшим - из пластика.

3. Зная коэффициент трения материала подошвы о различную поверхность, можно подобрать оптимальный вариант приобретения обуви. В качестве

Цель достигнута.


Спасибо за внимание!

И не падайте!

Просмотр содержимого презентации
«Сила трения»


НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО ФИЗИКЕ «ИССЛЕДОВАНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ ОБУВИ О РАЗЛИЧНУЮ ПОВЕРХНОСТЬ»

Работу выполнил:

Ученик МБОУ «ООШ №4»

Буторин Глеб, 7 класс

Руководитель: учитель физики

Коваленко Инна Сергеевна


Актуальность

В зимнее время происходят очень много падений и травм, когда на улице гололёд.

Поэтому очень важно при покупке обуви учитывать особенности подошв и погодные условия, в которых вы будете носить данную обувь.


Проблема


Гипотеза


Цель работы:

Исследование трения подошв обуви, изготовленных из разных материалов о различные поверхности и определение наиболее практичных материалов для их изготовления.


Задачи:

1 . Изучить теоретические основы сухого трения.

2. Провести анкетирование среди учащихся для выявления наиболее популярных производителей обуви и уровня осведомлённости о материале подошвы и влияния материала подошвы на трение при ходьбе.

3. Измерить коэффициент трения скольжения материала обувной подошвы о различную поверхность.

4.Провести анализ полученных результатов измерений и выявить наиболее приемлемые варианты эксплуатации обуви.


Объект исследования


Предмет исследования


Методы исследования

1. Анкетирование.

2. Физический эксперимент.

3. Математический расчёт.

4. Анализ результатов.


ПО СТРАНИЦАМ ИСТОРИИ

Шарль Кулон провёл цикл опытов, в которых изучил важнейшие особенности явления трения.

Учёный на базе своих экспериментов уточнил законы трения, впервые сформулированные Амонтоном, установил и рассмотрел наличие межмолекулярной составляющей силы трения (хотя главным фактором считал зацепление неровностей). Также Кулоном была установлена зависимость силы трения покоя от продолжительности предварительного контакта тел.

За лучшее решение задач о трении в 1781 году ученый получил премию в 2 000 ливров от Французской академии наук.

День рождения : 14.06 . 1736 года

Дата смерти: 28.08 . 1806 года


Теоретическая часть

Трение - процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде.


Возникновение силы трения




Результаты анкетирования (54 опрошенных)

Номер вопроса

Количество

«Юничел»- 5

%, процент от общего числа

«Монро» - 8

«Обувь для всех» - 7

«Карри» - 6

Российские производители - 6

Производитель неизвестен - 22

1. Обувь каких производителей вы носите?

2. Знаете ли вы, что материал подошвы существенно влияет на трение при ходьбе?

3. При покупке обуви интересуетесь ли вы, из какого материала изготовлена подошва обуви?

4. Знаете ли вы о физических свойствах и характеристиках различных материалов для изготовления подошв?


Мои исследования

Опыт заключался в следующем: прикреплённую к динамометру обувь я тянул равномерно вдоль различных поверхностей, снимал показания динамометра в таком положении.


Мои исследования

А также измерял силу тяжести данной обуви. подвесив её к динамометру.

С помощью полученных результатов подсчитал коэффициенты трения различной обуви о разную поверхность.


ФОРМУЛА ДЛЯ ОПРЕДЕЛЕНИЯ СИЛЫ ТРЕНИ Я

F = µN,

где N = mg

µ- коэффициент пропорциональности

или коэффициент трения


Трение о ламинат

Фирма обуви

материал подошвы

Обувь для всех

материал поверхности

полиуретан

Fтр., Н (средн.значение)

(средн.значение)

коэффициент трения μ


Подсчёт среднего значения силы трения о ламинат

Юничел (пластик)

Обувь для всех (полиуретан)

Монро(резина)


Подсчёт коэффициента трения при трении обуви о ламинат

Юничел (пластик) μ

Обувь для всех (полиуретан)

Карри (каучук)

Монро (резина) μ


Диаграмма «Коэффициент трения о ламинат»


Трение о цемент

Фирма обуви

материал подошвы

материал поверхности

Обувь для всех

полиуретан

Fтр., Н (средн.значение)

(средн.значение)

коэффициент трения μ


Подсчёт среднего значения силы трения о цемент

Юничел(пластик)

Обувь для всех

(полиуретан)

Карри (каучук)

Монро (резина)


Подсчёт коэффициента трения при трении обуви о цемент

Юничел (пластик)

Обувь для всех (полиуретан)

Карри (каучук)

Монро (резина)


Диаграмма «Коэффициент трения о цемент»


Трение о ковёр

Фирма обуви

материал подошвы

Обувь для всех

материал поверхности

полиуретан

Fтр., Н (средн.значение)

коэффициент трения μ


Диаграмма «Коэффициент трения о ковёр»


Диаграмма зависимости коэффициента трения скольжения материала подошвы от вида поверхности


1 . Все опрошенные знают о влиянии материала подошвы на трение при ходьбе, но большинство из них не интересуются при покупке обуви материалом подошвы.

2. Материал подошвы существенно влияет на значение коэффициента трения. Наибольшим значением коэффициента трения скольжения обладает подошва, изготовленная из полиуретана , каучука и резины , а наименьшим - из пластика.

3. Зная коэффициент трения материала подошвы о различную поверхность, можно подобрать оптимальный вариант приобретения обуви. В качестве идеального варианта можно предложить обувь на каучуковой и полиуретановой подошве.

Цель достигнута.


Спасибо за внимание!

И не падайте!