Темы _

14.1. Метаболизм эритроцитов

14.2. Особенности метаболизма фагоцитирующих клеток

14.3. Основные биохимические механизмы гемостаза

14.4. Основные свойства белковых фракций крови и значение их определения для диагностики заболеваний

Цели изучения Уметь:

1. Объяснять причины, вызывающие гемолиз эритроцитов.

2. Описывать молекулярные механизмы возникновения нарушений свертывания крови.

3. Аргументировать целесообразность применения некоторых лекарственных препаратов для лечения нарушений свертывания крови.

4. Обосновывать основные причины возникновения гипо- и гиперпроте-

инемий. Знать:

1. Особенности метаболизма эритроцитов, пути образования и обезвреживания в них активных форм кислорода.

2. Роль активных форм кислорода в фагоцитозе.

3. Структуру ферментных комплексов прокоагулянтного этапа свертывания крови, последовательность их взаимодействия, механизмы регуляции и этапы образования фибринового тромба.

4. Роль и молекулярные основы функционирования противосвертывающей и фибринолитической систем крови.

5. Молекулярные механизмы нарушений свертывания крови и современные способы их коррекции.

6. Основные свойства и функции белков плазмы крови.

ТЕМА 14.1. МЕТАБОЛИЗМ ЭРИТРОЦИТОВ

Эритроциты - высокоспециализированные клетки, которые переносят кислород от легких к тканям и диоксид углерода, образующийся при метаболизме из тканей к альвеолам легких. В результате дифференцировки эритроциты теряют ядро, рибосомы, митохондрии, эндоплазматический ретикулум. Эти клетки имеют только плазматическую мембрану и цитоплазму. Они не содержат ядра, поэтому неспособны к самовоспроизведению и репарации возникающих в них повреждений. Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной средой. Вместе с тем такая форма и особенности строения

цитоскелета и плазматической мембраны обеспечивают большую пластичность эритроцитов при прохождении ими мелких капилляров.

Метаболизм глюкозы в эритроцитах представлен анаэробным гликолизом и пентозофосфатным путем превращения глюкозы. Эти процессы обусловливают сохранение структуры и функций гемоглобина, целостность клеточной мембраны и образование энергии для работы ионных насосов.

1. Гликолиз обеспечивает энергией работу транспортных АТФаз, а также протекающие с затратой АТФ гексокиназную и фосфофруктокиназную реакции гликолиза. NADH, образующийся в ходе анаэробного гликолиза, является коферментом метгемоглобинредуктазы, катализирующей восстановление метгемоглобина в гемоглобин. Кроме того, в эритроцитах присутствует фермент бисфосфоглицератмутаза, превращающий промежуточный метаболит этого процесса 1,3-бисфосфоглицерат в 2,3-бисфосфоглицерат. Образующийся только в эритроцитах 2,3-бисфосфоглицерат служит важным аллостерическим регулятором связывания кислорода с гемоглобином. На окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, участвующий в восстановлении глутатиона. Последний используется в антиоксидантной защите эритроцитов (рис. 14.1).

Рис. 14.1. Образование и обезвреживание активных форм кислорода в эритроцитах:

1 - источник супероксидного аниона в эритроцитах - спонтанное окисление Fe 2 + в геме гемоглобина; 2 - супероксиддисмутаза превращает супероксидный анион в пероксид водорода и О 2 ; 3 - пероксид водорода расщепляется каталазой или глутатионпероксидазой; 4 - глутатионредуктаза восстанавливает окисленный глутатион; 5 - на окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, необходимый для восстановления глутатиона; 6 - в глицеральдегидфосфатдегидрогеназной реакции гликолиза образуется NADH, участвующий в восстановлении железа метгемоглобина метгемоглобинредуктазной системой

2. Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала O 2 - , пероксида водорода Н 2 О 2 и гидроксил-радикала ОН".

Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление железа гемоглобина:

Активные формы кислорода могут вызвать гемолиз эритроцитов. Эритроциты содержат ферментативную систему, предотвращающую токсическое действие радикалов кислорода и разрушение мембран эритроцитов.

3. Нарушение любого звена ферментативной системы обезвреживания активных форм кислорода приводит к снижению скорости этого процесса. При генетическом дефекте глюкозо-6-фосфатдегидрогеназы и приеме некоторых лекарств, являющихся сильными окислителями, потенциал глутатионовой защиты может оказаться недостаточным. Это приводит к повышению содержания в клетках активных форм кислорода, вызывающих окисление SH-групп молекул гемоглобина. Образование дисульфидных связей между протомерами гемоглобина и метгемоглобина приводит к их агрегации - образованию телец Хайнца (рис. 14.2).

Рис. 14.2. Схема образования телец Хайнца - агрегации молекул гемоглобина.

В норме супероксиддисмутаза катализирует образование пероксида водорода, который под действием глутатионпероксидазы превращается в Н 2 О. При недостаточной активности ферментов обезвреживания активных форм кислорода происходит окисление SH-групп в остатках цистеина протомеров метгемоглобина и образование дисульфидных связей. Такие структуры называются тельцами Хайнца

Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Активные формы кислорода, вызывая перекисное окисление липидов мембран, разрушают мембраны.

ТЕМА 14.2. ОСОБЕННОСТИ МЕТАБОЛИЗМА ФАГОЦИТИРУЮЩИХ КЛЕТОК

Фагоцитоз обеспечивает защиту организма от бактерий. Моноциты и нейтрофилы мигрируют из кровяного русла к очагу воспаления и эндоцитозом захватывают бактерии, образуя фагосому.

1. Фагоцитоз требует увеличения потребления кислорода, который является главным источником O 2 - , H 2 O 2 , OH" в фагоцитирующих клетках (рис. 14.3). Этот процесс, продолжающийся 30-40 минут, сопровождается резким повышением поглощения кислорода и поэтому называется респираторным взрывом.

2. В макрофагах бактерицидное действие оказывает оксид азота NO, источником которого является реакция превращения аргинина в NO и цитруллин под действием NO-синтазы. Супероксид анион образует с оксидом азота соединения, обладающие сильными бактерицидными свойствами:

NO + О 2 - → ONOO - → ОН* + NO 2 .

Пероксинитрит ONOO - , оксид азота, диоксид азота, гидроксил радикал вызывают окислительное повреждение белков, нуклеиновых кислот и липидов бактериальных клеток.

Рис. 14.3. Образование активных форм кислорода в процессе респираторного взрыва активированными макрофагами, нейтрофилами и эозинофилами.

Активация NADPH-оксидазы, которая локализована на мембране клетки, вызывает образование супероксидных анионов. При фагоцитозе мембрана впячивается, затем образуется эндосома и супероксидсинтезирующая система вместе с бактериальной клеткой оказывается в эндосоме. Супероксидные анионы генерируют образование других активных молекул, включая Н 2 О 2 и гидроксильные радикалы. Миелопероксидаза - гемсодержащий фермент, находящийся в гранулах нейтрофилов. Она поступает в эндосому, где образует НС1О. В результате мембраны и другие структуры бактериальной клетки разрушаются

ТЕМА 14.3. ОСНОВНЫЕ БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ

ГЕМОСТАЗА

Прекращение кровотечения после травмы кровеносных сосудов, раство рение сгустков крови - тромбов - и сохранение крови в жидком состоянии обеспечивает гемостаз. Этот процесс включает четыре этапа:

Рефлекторное сокращение поврежденного сосуда в первые секунды после травмы;

Образование в течение 3-5 минут тромбоцитарной пробки (белого тромба в результате взаимодействия поврежденного эндотелия с тромбоцитами;

Формирование в продолжение 10-30 мин фибринового (красного" тромба: растворимый белок плазмы крови фибриноген под действием фермента тромбина превращается в нерастворимый фибрин, который откладывается между тромбоцитами белого тромба;

Фибринолиз - растворение тромба под действием протеолитических ферментов, адсорбированных на фибриновом сгустке. На этом этапе просвет кровеносного сосуда освобождается от отложений фибрина и предотвращается закупорка сосуда фибриновым тромбом.

1. Свертывание крови - важнейшая часть гемостаза. В процессе формирова ния фибринового тромба можно выделить четыре этапа.

Превращание фибриногена в фибрин-мономер. Молекула фибриногена состоит из шести полипептидных цепей трех типов - 2Аа, 2Вр, 2γ. Они связаны между собой дисульфидными связями и образуют три домена А- и В-участки находятся на N-концах цепей Аа и Вр соответственно Эти участки содержат много остатков дикарбоновых аминокислот и поэтому заряжены отрицательно, что препятствует агрегации молекул фибриногена (рис. 14.4). Тромбин, который относится к группе серино вых протеаз, отщепляет А- и В-пептиды от фибриногена; в результате образуется фибрин-мономер.

Рис. 14.4. Строение фибриногена.

Фиброген состоит из шести полипептидных цепей 3 типов: 2Λα , 2Ββ и 2γ, образующих три домена (обозначены штрихами). Λ и В - отрицательно заряженные участки цепей Λα и Ββ препятствуют агрегации молекул фибриногена

Образование нерастворимого геля фибрина. В молекулах фибринамономера имеются участки, комплементарные к другим молекулам фибрина, - центры связывания, между которыми образуются нековалентные связи. Это приводит к полимеризации молекул фибрина и формированию нерастворимого геля фибрина (рис. 14.5). Он непрочен, так как образован слабыми нековалентными связями.

Рис. 14.5. Образование геля фибрина.

Фибриноген, освобождаясь под действием тромбина от отрицательно заряженных пептидов 2А и 2В, превращается в фибрин-мономер. Взаимодействие комплементарных участков в доменах молекул фибрина-мономера с другими такими же молекулами приводит к образованию геля фибрина

Стабилизация геля фибрина. Фермент трансглутамидаза (фактор XIIIa) образует амидные связи между радикалами аминокислот Глн и Лиз мономеров фибрина и между фибрином и гликопротеином межклеточного матрикса фибронектином (рис. 14.6.)

Сжатие геля осуществляет сократительный белок тромбоцитов тромбостенин в присутствии АТФ.

2. Свертывание крови может идти по внешнему или внутреннему пути.

Внешний путь свертывания крови инициируется при взаимодействии белков свертывающей системы с тканевым фактором (Тф) - белком, который экспонируется на мембранах поврежденного эндотелия и активированных тромбоцитов, внутренний путь - при контакте белков свертывающей системы с отрицательно заряженными участками поврежденного эндотелия.

Рис. 14.6. Образование амидных связей между остатками Глн и Лиз в мономерах фибрина

Коагуляции (образованию фибринового тромба) предшествует ряд последовательных реакций активации факторов свертывания крови. Эти реакции инициируются на поврежденной или измененной тромбогенным сигналом клеточной мембране и заканчиваются активацией протромбина.

Каскад реакций прокоагулянтного этапа имеет ряд особенностей:

Все ферменты являются протеазами и активируются частичным протеолизом;

Все реакции локализованы на поврежденных мембранах клеток крови и эндотелия, поэтому тромб образуется на этих участках;

Максимальную активность ферменты проявляют в составе мембранных комплексов, включающих фермент, фосфолипиды клеточных мембран, белок-активатор, Са 2 +.

Большинство факторов свертывания активируется по механизму положительной обратной связи.

В прокоагулянтном каскаде реакций внешнего пути последовательно образуются три мембранных комплекса (рис. 14.7). Каждый из них включает:

белок-активатор протеолитического фермента - тканевой фактор (Тф) (не требует активации), факторы V или VIII (активируются частичным протеолизом);

отрицательно заряженные фосфолипиды мембран эндотелия или тромбоцитов. При травме или поступлении тромбогенного сигнала нарушается поперечная асимметрия мембран, на поверхности появляются отрицательно заряженные фосфолипиды, экспонируется тканевой фактор и таким образом формируются тромбогенные участки;

ионы Са 2 +, взаимодействуя с полярными «головками» отрицательно заряженных фосфолипидов, обеспечивают связывание ферментов прокоагулянтного пути с мембранами клеток. В отсутствии Са 2 + кровь не свертывается;

Рис. 14.7. Прокоагулянтный этап внешнего пути свертывания крови и превращение фибриногена в фибрин.

Стрелка - активация факторов свертывания крови; стрелка с точками - активация факторов свертывания по принципу положительной обратной связи; - - мембранный фосфолипидный компонент ферментных комплексов, в рамке - белкиактиваторы.

1, 2 - фактор VIIa мембранного комплекса УПа-Тф-Са 2+ активирует факторы IX и X; 3 - фактор 1Ха мембранного комплекса IXa-VIIIa-Ca 2 + (тенназа) активирует фактор X; 4, 5 - фактор Ха мембранного комплекса Ха-Уа-Са 2 + (протромбиназа) превращает протромбин (фактор II) в тромбин (фактор Па) и активирует фактор VII по принципу положительной обратной связи; 6-10 - тромбин (фактор Па) превращает фибриноген в фибрин, активирует факторы V, VII, VIII и XIII

Один из протеолитических ферментов (сериновую протеазу) - фактор VII, IX или X. Эти белки содержат на N-концах молекул 10-12 остатков γ-карбоксиглутаминовой кислоты. Посттрансляционное карбоксилирование факторов VII, IX, X, а также протромбина, плазминогена и протеина С катализирует γ-глутамилкарбоксилаза. Коферментом этого фермента является восстановленная форма витамина K, которая образуется в печени под действием NADPH-зависимой витамин К-редуктазы (рис. 14.8).

Структурные аналоги витамина К - дикумарол и варфарин - являются конкурентными ингибиторами NADPH-зависимой витамин K-редуктазы.

Они снижают скорость восстановления витамина К и, следовательно, активность γ-глутамилкарбоксилазы. Производные варфарина и дикумарола используют как непрямые антикоагулянты для предотвращения тромбозов.

Инициирующий мембранный комплекс содержит белок-активатор Тф, фермент фактор VII и ионы Са 2 +. Фактор VII обладает небольшой активностью, но в комплексе VII-Тф-Са 2+ его активность в результате конформационных изменений возрастает, и он частичным протеолизом активирует фактор X.

Рис. 14.8. Посттрансляционное карбоксилирование остатков глутаминовой кислоты в молекулах сериновых протеаз свертывающей системы крови; роль Са 2 + в связывании этих ферментов на тромбогенных участках клеточных мембран

Кроме того, инициирующий комплекс активирует фактор IX. Мембранные комплексы IXа-VIIIa-Са 2 + (тенназа) и VIIа-Тф-Са 2 + образуют активный фактор Xа. Последний в составе протромбиназного комплекса Xа-Vа-Са 2 + может превращать небольшое количество протромбина (фактор II) в тромбин (фактор На). Образовавшийся тромбин активирует (по принципу положительной обратной связи) факторы V, VIII, VII, которые включаются в состав мембранных комплексов.

Протромбин - это гликопротеин плазмы крови, который синтезируется в печени. Молекула протромбина состоит из одной полипептидной цепи, содержит одну дисульфидную связь и остатки γ-карбоксиглутамата. Последние, взаимодействуя с Са 2 +, связывают профермент с мембраной (рис. 14.9).

Фактор Xa протромбиназного комплекса гидролизует две пептидные связи в молекуле протромбина, и он превращается в тромбин. Тромбин состоит из двух полипептидных цепей, связанных дисульфидной связью, и не содержит остатков γ-карбоксиглутамата (рис. 14.10).



эндотелия формируются три ферментных комплекса, каждый из которых содержит один из протеолитических ферментов - фактор калликреин или фактор и белок-активатор высокомолекулярный кининоген (ВМК). Калликреин - сериновая протеаза, субстратами которой являются фактор XII и некоторые белки плазмы крови, например плазминоген. Комплекс фактор XIIa-ВМК превращает прекалликреин в калликреин, который вместе с ВМК по принципу положительной обратной связи активирует фактор XII, включающийся в комплекс XIIa-BMK. В его составе фактор XIIa протеолитически активирует фактор XI, который в комплексе с ВМК превращает фактор IX в активный IXа. Последний включается в состав мембранного комплекса IXа-УШа-Са2+, который частичным протеолизом образует фактор Xа, являющийся протеолитическим ферментом протромбиназы Xа-Vа-Са2+) (рис. 14.11).

Рис. 14.11. Схема внутреннего и внешнего путей свертывания крови:

ВМК - высокомолекулярный кининоген; Тф - тканевой фактор. Обозначения см. на рис. 14.7

Все ферменты свертывающей системы крови являются протеазами и активируются частичным протеолизом:

1 - активируемый контактом с субэндотелием фактор XII превращает прекалликреин в калликреин; 2 - калликреин комплекса калликреин-ВМК частичным протеолизом активирует фактор XII; 3 - фактор XIIa комплекса XIIа-BMK активирует фактор XI;

4 - активированный частичным протеолизом фактор XIIa комплекса XIIa-ВМК превращает прекалликреин в калликреин по принципу положительной обратной связи;

5 - фактор XIa комплекса XIa-ВМК активирует фактор IX; 6 - фактор IXа мембранного комплекса IXа-УШа-Са2+ активирует фактор X; 7, 8 - фактор УПа мембранного комплекса УПа-Тф-Са 2 + активирует факторы IX и X; 9 - фактор Xa протромбиназного комплекса активирует фактор II (протромбин); 10, 11 - фактор IIа (тромбин) превращает фибриноген в фибрин и активирует фактор XIII (трансглутамидазу); 12 - фактор XIIIa катализирует образование амидных связей в геле фибрина;

5. Таким образом, каскад реакций внешнего и внутреннего путей свертывания крови приводит к образованию протромбиназы. Этапы, одинаковые для обоих путей, называют общим путем свертывания крови.

Каждое ферментативное звено реакций свертывания крови обеспечивает усиление сигнала, а положительные обратные связи обусловливают лавинообразное ускорение всего процесса, быстрое образование тромба и прекращение кровотечения.

6. Гемофилии. Снижение свертываемости крови приводит к гемофилиям - заболеваниям, сопровождающимся повторяющимися кровотечениями. Причина кровотечений при этих заболеваниях - наследственная недостаточность белков свертывающей системы крови.

Гемофилия А обусловлена мутацией гена фактора VIII, локализованного в X-хромосоме. Дефект этого гена проявляется как рецессивный признак, поэтому этой формой болезни страдают только мужчины. Гемофилия А сопровождается подкожными, внутримышечными и внутрисуставными кровоизлияниями, опасными для жизни.

Гемофилия В связана с генетическим дефектом фактора IX, который встречается гораздо реже.

7. Противосвертывающая система крови ограничивает распространение тромба и сохраняет кровь в жидком состоянии. К ней относятся ингибиторы ферментов свертывания крови и антикоагулянтная система (антикоагулянтный путь).

Антитромбин III - белок плазмы крови, который инактивирует ряд сериновых протеаз: тромбин, факторы IXa, Xa, XIIa, плазмин, калликреин. Этот ингибитор образует комплекс с ферментами, в составе которого они теряют свою активность. Активатором антитромбина III является гетерополисахарид гепарин. Гепарин поступает в кровь из тучных клеток соединительной ткани, взаимодействует с ингибитором, изменяет его конформацию, повышая его сродство к сериновым протеазам (рис. 14.12).

Ингибитор тканевого фактора (антиконвертин) синтезируется клетками эндотелия и локализуется на поверхности плазматической мембраны. Он образует с фактором Xa комплекс, который связывается с фосфолипидами мембран и тканевым фактором. В результате этого комплекс УПа-Тф-Са 2 + не образуется и становится невозможной активация факторов X и IX.

A 2 -Макроглобулин взаимодействует с активными сериновыми протеазами и подавляет их протеолитическую активность.

а 1 -Антитрипсин ингибирует тромбин, фактор XIa, калликреин, а также панкреатические и лейкоцитарные протеазы, ренин, урокиназу.

Антикоагулянтная система (система протеина С) включает последовательное образование двух ферментных комплексов. Взаимодействие тромбина с белком-активатором тромбомодулином (Тм) в присутствии ионов Са 2+ приводит к образованию первого мембранного комплекса

Рис. 14.12. Инактивация антитромбином III сериновых протеаз.

Гепарин связывается с антитромбином III, изменяет его конформацию и увеличивает сродство к сериновым протеазам.

Присоединение протеазы к комплексу гепарин-антитромбин III снижает сродство гепарина к ингибитору. Гетерополисахарид освобождается из комплекса и может активировать другие молекулы антитромбина III

антикоагулянтной системы Па-Тм-Са 2+ . В его составе тромбин, с одной стороны, теряет способность активировать факторы V и VIII, а также превращать фибриноген в фибрин, а с другой - частичным протеолизом активирует протеин С. Активированный протеин С (Са), взаимодействуя с белком активатором S, образует с помощью Са 2 + на мембране комплекс протеин Са-S-Са 2 +. В этих условиях активированный протеин С (Са) катализирует гидролиз белков-активаторов факторов Va и VIIIa (рис. 14.13).


Разрушение этих белков-активаторов приводит к торможению каскада реакций внешнего пути свертывания крови и остановке образования тромба.

8. Фибринолиз - это гидролиз фибрина в составе тромба с образованием растворимых пептидов, которые удаляются из кровотока. Этот этап гемостаза предотвращает закупорку сосуда фибриновым тромбом. Формирование фибринового тромба сопровождается осаждением на нем профермента плазминогена и его активаторов. Неактивный плазминоген синтезируется в печени и поступает в кровь. В крови он превращается в активный фермент плазмин частичным протеолизом. Эту реакцию катализируют протеолитические ферменты: тканевой активатор плазминогена (ТАП), урокиназа, фактор XIIa и калликреин (рис. 14.14).

Рис. 14.14. Фибринолитическая система крови:

1 - плазминоген под действием активаторов (ТАП, калликреина, урокиназы, фактора XIIa) частичным протеолизом превращается в плазмин; 2 - плазмин гидролизует фибрин с образованием растворимых пептидов; 3 - ТАП поступает в кровоток и ингибируется специфическими ингибиторами I и II типа; 4 - плазмин ингибируют неспецифические ингибиторы сериновых протеаз

Образующийся плазмин разрушает фибриновые волокна. Освобождающиеся из тромба плазмин и его активаторы поступают в кровоток. В крови плазмин инактивируется неспецифическими ингибиторами сериновых протеаз, а активаторы плазминогена - ингибиторами активаторов плазминогена I и II типа. Наследственная или приобретенная недостаточность белков фибринолитической системы сопровождается тромбозами.

ТЕМА 14.4. ОСНОВНЫЕ СВОЙСТВА БЕЛКОВЫХ ФРАКЦИЙ КРОВИ И ЗНАЧЕНИЕ ИХ ОПРЕДЕЛЕНИЯ ДЛЯ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ

Белки плазмы крови:

Образуют буферную систему крови и поддерживают рН крови в пределах 7,37-7,43;

Поддерживают осмотическое давление, удерживая воду в сосудистом русле;

Транспортируют метаболиты, витамины, ионы металлов, лекарства;

Определяют вязкость крови, играя важную роль в гемодинамике кровеносной системы;

Являются резервом аминокислот для организма;

Выполняют защитную роль.

1. Общий белок плазмы крови составляет 60-80 г/л, альбумин - 40- 60 г/л, глобулины 20-30 г/л.

Белки плазмы крови электрофоретически можно разделить на фракции, количество которых в зависимости от условий электрофореза может составлять от пяти до шестидесяти. При электрофорезе на бумаге белки делятся на пять фракций: альбумин (55-65%), - α1-глобулины (2-4%), α 2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%). Альбумин имеет наибольшую, а γ-глобулины наименьшую подвижность в электрическом поле.

Большинство белков плазмы крови синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами, а пептидные гормоны в основном секретируют эндокринные железы.

2. Белок альбумин синтезируется в печени, имеет небольшую молекулярную массу и составляет большую часть белков плазмы крови. Благодаря высокому содержанию дикарбоновых аминокислот альбумин удерживает катионы, главным образом Na+, Са 2 +, Zn 2 +, и играет основную роль в сохранении коллоидно-осмотического давления. Альбумин является важнейшим транспортным белком. Он транспортирует жирные кислоты, неконъюгированный билирубин, триптофан, тироксин, трийодтиронин, альдостерон, многие лекарства.

3. Глобулины составляют четыре фракции: α 1 , α 2 , β и γ. В эти фракции входят белки, которые выполняют специфические и защитные функции, например, тироксин- и кортизолсвязывающие белки, трансферрин, церулоплазмин (ферроксидаза), интерфероны, иммуноглобулины.

4. Содержание белков в плазме крови может изменяться при патологических состояниях. Такие изменения называются диспротеинемией.

Гиперпротеинемия - это повышение концентрации белков в плазме крови.

Гиперпротеинемия может быть вызвана потерей воды организмом при полиурии, диарее, рвоте или обусловлена повышением содержания γ-глобулинов и некоторых других белков при острых воспалительных процессах, травмах, миеломной болезни. Их называют белками острой фазы, и к ним относят, например, С-реактивный белок (называемый так потому, что взаимодействует с С-полисахаридами пневмококков), гаптоглобин (образует комплекс с гемоглобином, который поглощается макрофагами, что предотвращает потерю железа), фибриноген.

Гипопротеинемия в основном является следствием нарушения синтеза или потери организмом альбумина, то есть является гипоальбуминемией. Она наблюдается при нефрите, гепатите, циррозе печени, ожогах, продолжительном голодании. Уменьшение содержания альбумина в крови приводит к снижению осмотического давления, а также нарушению распределения жидкости между сосудистым руслом и межклеточным пространством, что проявляется в виде отеков.

ЗАДАНИЯ ДЛЯ ВНЕАУДИТОРНОЙ РАБОТЫ

1. Нарисуйте в тетради схему метаболизма эритроцитов (рис. 14.15) и завершите ее, указав:

а) ферменты, обозначенные цифрами 1, 2, 3 и т. д.;

б) коферменты, обозначенные # и *;

в) ферменты метаболизма глюкозы, которые катализируют реакции восстановления NADP+ и NAD+;

Рис. 14.15. Метаболизм эритроцитов:

#, * - коферменты, #Н, *Н - восстановленные коферменты

г) аллостерический регулятор, снижающий сродство гемоглобина к кислороду в тканях;

д) ферменты катаболизма глюкозы, обеспечивающие синтез АТФ.

2. Напишите реакции:

а) образования активных форм кислорода в эритроцитах;

б) восстановления глутатиона;

в) устранения Н 2 О 2 ;

г) восстановления метгемоглобина в гемоглобин.

3. Нарисуйте в тетради схему прокоагулянтного этапа свертывания крови (рис. 14.16), заменив знак вопроса соответствующим фактором.

Рис. 14.16. Прокоагулянтный этап свертывания крови и образование геля фибрина

4. Напишите реакцию образования амидной связи между радикалами остатков глутамина и лизина мономеров фибрина, укажите фермент, его профермент, активатор и механизм активации. Объясните значение этой реакции в формировании фибринового тромба.

5. Представьте схему, показывающую роль тромбина на прокоагулянтном этапе свертывания крови и в антикоагулянтном пути, дописав названия отсутствующих белков и кофакторов (рис. 14.17). Укажите механизмы действия каждого фактора и его роль в гемостазе.

Рис. 14.17. Роль тромбина на прокоагулянтном этапе и в антикоагулянтном пути свертывания крови

6. Сравните результаты, полученные при электрофоретическом разделении на бумаге белков плазмы крови (протеинограммы) в норме и при некоторых патологических состояниях (рис. 14.18). Укажите возможные причины, вызвавшие изменения количества белков некоторых фракций при этих состояниях организма.

Рис. 14.18. Протеинограммы белков плазмы крови в норме и при некоторых патологических состояниях

7. Заполните табл. 14.1, указав функции белков плазмы крови. Таблица 14.1. Функции некоторых белков плазмы крови

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Установите правильную последовательность событий.

При обезвреживании активных форм кислорода в эритроцитах:

A. Супероксиддисмутаза катализирует образование пероксида водорода

Б. Гемоглобин спонтанно окисляется в метгемоглобин

B. Глутатионпероксидаза разрушает пероксид водорода

Г. Глутатионредуктаза восстанавливает окисленный глутатион Д. Глюкозо-6-фосфатдегидрогеназа восстанавливает NADP+

2. Выберите правильные ответы. В фагоцитирующих клетках:

A. Глутатионпероксидаза окисляет глутатион Б. NADPn-оксидаза восстанавливает О 2

B. Активные формы кислорода вызывают свободнорадикальные реакции

Г. Супероксиддисмутаза превращает супероксидный анион в Н 2 О 2 Д. Миелопероксидаза катализирует образование НОСl

3. Выполните «цепное» задание:

а) в результате механического или химического повреждения клеток эндотелия на поверхности экспонируется белок:

A. Тромбомодулин Б. Фактор V

B. Трансглутамидаза Г. Тканевой фактор Д. Протеин С

б) он активирует сериновую протеазу инициирующего комплекса свертывающей системы крови:

A. Тканевой фактор Б. Тромбомодулин

B. Протеин S Г. Фактор VII Д. Фактор II

в) этот активированный фермент в составе мембранного комплекса действует на субстрат:

A. Фибриноген Б. Протеин С

B. Гепарин

Г. Протромбин Д. Фактор X

г) протеолитическая активация этого субстрата приводит к образованию:

A. Фибрина

Б. Активированного протеина С

B. Фактора ХШа Г. Тромбина

Д. Фактора Ха

д) этот белок вызывает:

A. Активацию протеина С

Б. Превращение плазминогена в плазмин

B. Образование комплекса с гепарином Г. Активацию тканевого фактора

Д. Отщепление пептида от профермента

е) в результате этого образуется:

A. Плазмин

Б. Активная трансглутамидаза

B. Фибрин-мономер

Д. Тромбин

ж) этот белок участвует в реакции:

A. Частичного протеолиза Б. Фосфорилирования

B. Карбоксилирования Г. Полимеризации

Д. Конъюгации

з) в результате этой реакции происходит:

A. Образование белого тромба Б. Агрегация тромбоцитов

B. Ретракция геля фибрина

Г. Формирование красного тромба

Д. Превращение фибриногена в фибрин

4. Выполните «цепное» задание:

а) посттрансляционной модификацией ферментов свертывающей системы крови является:

A. Фосфорилирование серина Б. Окисление лизина

B. Гликозилирование серина

Г. Карбоксилирование глутамата Д. Гидроксилирование пролина

б) в этой реакции участвует кофермент:

A. NADP+ Б. FAD

Д. Восстановленная форма витамина K (КН 2)

в) структурным аналогом этого кофермента является лекарственный препарат:

A. Сульфаниламид Б. Фенобарбитал

B. Дитилин Г. Варфарин

Д. Аллопуринол

г) лечение этим препаратом вызывает (выберите правильные ответы):

A. Повышение свертываемости крови

Б. Нарушение образования ферментных мембранных комплексов

B. Снижение свертываемости крови

Г. Ускорение трансляции протеолитических ферментов внешнего

пути свертывания крови Д. Повышение скорости полимеризации фибрина.

5. Выберите правильные ответы.

Ингибиторами свертывания крови являются:

A. а 2 -Макроглобулин Б. Антитромбин III

B. Плазмин

Г. Антиконвертин Д. а^Антитрипсин

6. Выполните «цепное» задание.

а) тромбомодулин активирует:

A. Протеин С Б. Протеин S

B. Тканевой фактор Г. Протромбин

Д. Тромбин

б) этот белок изменяет свою конформацию и приобретает способность активировать:

A. Фактор VIII Б. Фактор V

B. Протеин S Г. Протеин С

Д. Антитромбин III

в) активация выбранного вами белка стимулирует образование следующего мембранного комплекса, в котором белком-активатором является:

A. Протеин S Б. Протеин С

B. Плазмин Г. Фактор V

г) этот активатор повышает сродство сериновой протеазы к субстратам (выберите правильные ответы):

A. Фактору Vа Б. Фактору VIIa

B. Фибрину

Г. Фактору VIIIa Д. Тромбину

7. Выберите правильные ответы.

Плазмин:

A. Образуется в результате частичного протеолиза из профермента. Б. Является сериновой протеазой

B. Активируется гепарином Г. Гидролизует фибрин

Д. Ингибируется α 2 -макроглобулином

8. Выберите правильные ответы. Гипоальбуминемия наблюдается при:

Б. Нефротическом синдроме

B. Злокачественных новообразованиях в печени Г. Циррозе печени

Д. Желчнокаменной болезни.

9. Выберите правильные ответы.

Гиперпротеинемия наблюдается при:

Б. Полиурии

B. Инфекционных болезнях Г. Повторяющейся рвоте

Д. Длительных кровотечениях

ЭТАЛОНЫ ОТВЕТОВ К «ЗАДАНИЯМ ДЛЯ САМОКОНТРОЛЯ»

1. Б→А→В→Т→Д

2. Б, В, Г, Д

3. а) Г, б) Г, в) Д, г)Д, д) Д, е) Д, ж) А, з) Д

4. а) Г, б) Д, в) Г, г) Б, В

5. А, Б, Г, Д

6. а) Д, б) Г, в) А, г) А, Г

7. А, Б, Г, Д

8. Б, В, Г

9. А, Б, В, Г

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ

1. Метгемоглобинредуктаза

2. Бисфосфоглицератмутаза

3. Супероксиддисмутаза

4. Глутатионредуктаза

5. Тельца Хайнца

6. Гемостаз

7. Адгезия и агрегация тромбоцитов

8. Гемофилии

9. Тромбозы

10. Свертывание крови (внешний и внутренний пути свертывания крови)

11. Факторы свертывания крови

12. Витамин К

13. Противосвертывающая система (антитромбин III, антиконвертин, а 2 -макроглобулин, система протеина С)

14. Фибринолиз

15. Белки плазмы крови (альбумин, α 1 -глобулины, α 2 -глобулины, β-глобулины и γ-глобулины)

16. Гиперпротеинемия. Гипопротеинемия

ЗАДАНИЯ ДЛЯ АУДИТОРНОЙ РАБОТЫ

Решите задачи

1. Парацетамол - жаропонижающее и болеутоляющее вещество, которое входит в состав некоторых лекарств, например гриппостада, фервекса. Однако такие препараты противопоказаны людям, имеющим генетический дефект глюкозо-6-фосфатдегидрогеназы эритроцитов. Какие последствия может вызвать прием лекарств, содержащих парацетамол, у пациентов с недостаточностью этого фермента? Для ответа на вопрос напишите:

а) реакцию образования супероксидного аниона в эритроцитах;

б) схему обезвреживания активных форм кислорода в эритроцитах и объясните значение окислительных реакций пентозо-фосфатного пути для нормального протекания этого процесса.

2. У пациента, страдающего хроническим грануломатозом, обнаружена наследственная недостаточность NADPH-оксидазы. При этом заболевании некоторые микроорганизмы сохраняют жизнеспособность внутри фагоцитов, а их антигены вызывают клеточный иммунный ответ и образование гранулем. Объясните роль NADPH-оксидазы в фагоцитозе. Для этого:

а) напишите реакцию, которую катализирует этот фермент;

б) укажите вещества, синтез которых снижается в фагоцитирующих клетках при недостаточности NADPH-оксидазы.

3. В слюнных железах медицинской пиявки содержится ингибитор тромбина - пептид гирудин. В крови человека гирудин образует комплекс с тромбином, в котором фермент теряет способность превращать фибриноген в фибрин. Почему гирудотерапию (лечение пиявками) используют для профилактики тромбозов при сердечно-сосудистых заболеваниях? Для ответа на вопрос опишите:

а) этапы образования фибринового тромба;

б) особенности строения протромбина и механизм его превращения в тромбин.

4. Для профилактики тромбозов и тромбоэмболии после инфаркта миокарда врач назначил пациентке препарат варфарин и рекомендовал диету, исключающую на время лечения продукты, богатые витамином К (капусту, шпинат, салат, зеленый чай). Обоснуйте рекомендацию врача. Для этого:

а) укажите кофермент, образующийся в организме из витамина К;

б) объясните значение посттрансляционной модификации сериновых протеаз, в которой участвует этот кофермент;

в) опишите роль протеаз в мембранных ферментных комплексах внешнего пути свертывания крови.

5. В отсутствии ионов Са 2 + кровь не свертывается. Какую роль играет Са 2 + в свертывании крови? Для ответа на вопрос:

а) опишите состав мембранных комплексов прокоагулянтного этапа внешнего пути свертывания крови и последовательность их взаимодействия;

б) укажите роль Са 2+ в формировании этих комплексов.

6. У новорожденного с наследственным дефицитом протеина С обнаружена легочная эмболия. Почему ребенок, гомозиготный по такой мутации, может погибнуть сразу после рождения, если ему не проводить заместительную терапию протеином С? Для ответа на вопрос:

а) напишите схему реакций системы протеина С;

б) объясните роль тромбина в гемостазе.

7. Пациентке, страдающей тромбофлебитом, для профилактики тромбоза назначили лечение тканевым активатором плазминогена (ТАП). Объясните механизм действия рекомендованного врачом препарата. Для этого представьте схему фибринолитической системы крови и укажите роль ТАП, ингибитора активатора плазминогена и ингибиторов плазмина.

8. Редкое наследственное аутосомно-рецессивное заболевание анальбуминемия сопровождается почти полным отсутствием альбумина. Почему у пациентов с такой патологией наблюдаются отеки? Для ответа на вопрос укажите:

а) особенности аминокислотного состава альбумина;

б) функции этого белка плазмы крови.

Свертывание крови - крайне сложный и во многом еще загадочный биохимический процесс, который запускается при повреждении кровеносной системы и ведет к превращению плазмы крови в студенистый сгусток, затыкающий рану и останавливающий кровотечение. Нарушения этой системы крайне опасны и могут привести к кровотечению, тромбозу или другим патологиям, которые совместно отвечают за львиную долю смертности и инвалидности в современном мире. Здесь мы рассмотрим устройство этой системы и расскажем о самых современных достижениях в ее изучении.

Каждый, кто хоть раз в жизни получал царапину или рану, приобретал тем самым замечательную возможность наблюдать превращение крови из жидкости в вязкую нетекучую массу, приводящее к остановке кровотечения. Этот процесс называется свертыванием крови и управляется сложной системой биохимических реакций.

Иметь какую-нибудь систему остановки кровотечения - абсолютно необходимо для любого многоклеточного организма, имеющего жидкую внутреннюю среду. Свертывание крови является жизненно необходимым и для нас: мутации в генах основных белков свертывания, как правило, летальны. Увы, среди множества систем нашего организма, нарушения в работе которых представляют опасность для здоровья, свертывание крови также занимает абсолютное первое место как главная непосредственная причина смерти: люди болеют разными болезнями, но умирают почти всегда от нарушений свертывания крови . Рак, сепсис, травма, атеросклероз, инфаркт, инсульт - для широчайшего круга заболеваний непосредственной причиной смерти является неспособность системы свертывания поддерживать баланс между жидким и твердым состояниями крови в организме.

Если причина известна, почему же с ней нельзя бороться? Разумеется, бороться можно и нужно: ученые постоянно создают новые методы диагностики и терапии нарушений свертывания. Но проблема в том, что система свертывания очень сложна. А наука о регуляции сложных систем учит, что управлять такими системами нужно особым образом. Их реакция на внешнее воздействие нелинейна и непредсказуема, и для того, чтобы добиться нужного результата, нужно знать, куда приложить усилие. Простейшая аналогия: чтобы запустить в воздух бумажный самолетик, его достаточно бросить в нужную сторону; в то же время для взлета авиалайнера потребуется нажать в кабине пилота на правильные кнопки в нужное время и в нужной последовательности. А если попытаться авиалайнер запустить броском, как бумажный самолетик, то это закончится плохо. Так и с системой свертывания: чтобы успешно лечить, нужно знать «управляющие точки».

Вплоть до самого последнего времени свертывание крови успешно сопротивлялось попыткам исследователей понять его работу, и лишь в последние годы тут произошел качественный скачок. В данной статье мы расскажем об этой замечательной системе: как она устроена, почему ее так сложно изучать, и - самое главное - поведаем о последних открытиях в понимании того, как она работает.

Как устроено свертывание крови

Остановка кровотечения основана на той же идее, что используют домохозяйки для приготовления холодца - превращении жидкости в гель (коллоидную систему, где формируется сеть молекул, способная удержать в своих ячейках тысячекратно превосходящую ее по весу жидкость за счет водородных связей с молекулами воды). Кстати, та же идея используется в одноразовых детских подгузниках, в которые помещается разбухающий при смачивании материал. С физической точки зрения, там нужно решать ту же самую задачу, что и в свертывании - борьбу с протечками при минимальном приложении усилий.

Свертывание крови является центральным звеном гемостаза (остановки кровотечения). Вторым звеном гемостаза являются особые клетки - тромбоциты , - способные прикрепляться друг к другу и к месту повреждения, чтобы создать останавливающую кровь пробку.

Общее представление о биохимии свертывания можно получить из рисунка 1, внизу которого показана реакция превращения растворимого белка фибриногена в фибрин , который затем полимеризуется в сетку. Эта реакция представляет собой единственную часть каскада, имеющую непосредственный физический смысл и решающую четкую физическую задачу. Роль остальных реакций - исключительно регуляторная: обеспечить превращение фибриногена в фибрин только в нужном месте и в нужное время.

Рисунок 1. Основные реакции свертывания крови. Система свертывания представляет собой каскад - последовательность реакций, где продукт каждой реакции выступает катализатором следующей. Главный «вход» в этот каскад находится в его средней части, на уровне факторов IX и X: белок тканевый фактор (обозначен на схеме как TF) связывает фактор VIIa, и получившийся ферментативный комплекс активирует факторы IX и X. Результатом работы каскада является белок фибрин, способный полимеризоваться и образовывать сгусток (гель). Подавляющее большинство реакций активации - это реакции протеолиза, т.е. частичного расщепления белка, увеличивающего его активность. Почти каждый фактор свертывания обязательно тем или иным образом ингибируется: обратная связь необходима для стабильной работы системы.

Обозначения: Реакции превращения факторов свертывания в активные формы показаны односторонними тонкими черными стрелками . При этом фигурные красные стрелки показывают, под действием каких именно ферментов происходит активация. Реакции потери активности в результате ингибирования показаны тонкими зелеными стрелками (для простоты стрелки изображены как просто «уход», т.е. не показано, с какими именно ингибиторами происходит связывание). Обратимые реакции формирования комплексов показаны двусторонними тонкими черными стрелками . Белки свертывания обозначены либо названиями, либо римскими цифрами, либо аббревиатурами (TF - тканевый фактор, PC - протеин С, APC - активированный протеин С). Чтобы избежать перегруженности, на схеме не показаны: связывание тромбина с тромбомодулином, активация и секреция тромбоцитов, контактная активация свертывания.

Фибриноген напоминает стержень длиной 50 нм и толщиной 5 нм (рис. 2а ). Активация позволяет его молекулам склеиваться в фибриновую нить (рис 2б ), а затем в волокно, способное ветвиться и образовывать трехмерную сеть (рис. 2в ).

Рисунок 2. Фибриновый гель. а - Схематическое устройство молекулы фибриногена. Основа ее составлена из трех пар зеркально расположенных полипептидных цепей α, β, γ. В центре молекулы можно видеть области связывания, которые становятся доступными при отрезании тромбином фибринопептидов А и Б (FPA и FPB на рисунке). б - Механизм сборки фибринового волокна: молекулы крепятся друг к другу «внахлест» по принципу головка-к-серединке, образуя двухцепочечное волокно. в - Электронная микрофотография геля: фибриновые волокна могут склеиваться и расщепляться, образуя сложную трехмерную структуру.

Рисунок 3. Трехмерная структура молекулы тромбина. На схеме показаны активный сайт и части молекулы, ответственные за связывание тромбина с субстратами и кофакторами. (Активный сайт - часть молекулы, непосредственно распознающее место расщепления и осуществляющее ферментативный катализ.) Выступающие части молекулы (экзосайты) позволяют осуществлять «переключение» молекулы тромбина, делая его мультифункциональным белком, способным работать в разных режимах. Например, связывание тромбомодулина с экзосайтом I физически перекрывает доступ к тромбину прокоагулянтным субстратам (фибриноген, фактор V) и аллостерически стимулирует активность по отношению к протеину C.

Активатор фибриногена тромбин (рис. 3) принадлежит к семейству сериновых протеиназ - ферментов, способных осуществлять расщепление пептидных связей в белках. Он является родственником пищеварительных ферментов трипсина и химотрипсина. Протеиназы синтезируются в неактивной форме, называемой зимогеном . Чтобы их активировать, необходимо расщепить пептидную связь, удерживающую часть белка, которая закрывает активный сайт. Так, тромбин синтезируется в виде протромбина, который может быть активирован. Как видно из рис. 1 (где протромбин обозначен как фактор II), это катализируется фактором Xa.

Вообще, белки свертывания называют факторами и нумеруют римскими цифрами в порядке официального открытия. Индекс «а» означает активную форму, а его отсутствие - неактивный предшественник. Для давно открытых белков, таких как фибрин и тромбин, используют и собственные имена. Некоторые номера (III, IV, VI) по историческим причинам не используются.

Активатором свертывания служит белок, называемый тканевым фактором , присутствующий в мембранах клеток всех тканей, за исключением эндотелия и крови. Таким образом, кровь остается жидкой только благодаря тому, что в норме она защищена тонкой защитной оболочкой эндотелия. При любом нарушении целостности сосуда тканевой фактор связывает из плазмы фактор VIIa, а их комплекс - называемый внешней теназой (tenase, или Xase, от слова ten - десять, т.е. номер активируемого фактора) - активирует фактор X.

Тромбин также активирует факторы V, VIII, XI, что ведет к ускорению его собственного производства: фактор XIa активирует фактор IX, а факторы VIIIa и Va связывают факторы IXa и Xa, соответственно, увеличивая их активность на порядки (комплекс факторов IXa и VIIIa называется внутренней теназой ). Дефицит этих белков ведет к тяжелым нарушениям: так, отсутствие факторов VIII, IX или XI вызывает тяжелейшую болезнь гемофилию (знаменитую «царскую болезнь», которой болел царевич Алексей Романов); а дефицит факторов X, VII, V или протромбина несовместим с жизнью.

Такое устройство системы называется положительной обратной связью : тромбин активирует белки, которые ускоряют его собственное производство. И здесь возникает интересный вопрос, а зачем они нужны? Почему нельзя сразу сделать реакцию быстрой, почему природа делает ее исходно медленной, а потом придумывает способ ее дополнительного ускорения? Зачем в системе свертывания дублирование? Например, фактор X может активироваться как комплексом VIIa-TF (внешняя теназа), так и комплексом IXa-VIIIa (внутренняя теназа); это выглядит совершенно бессмысленным.

В крови также присутствуют ингибиторы протеиназ свертывания. Основными являются антитромбин III и ингибитор пути тканевого фактора. Кроме этого, тромбин способен активировать сериновую протеиназу протеин С , которая расщепляет факторы свертывания Va и VIIIa, заставляя их полностью терять свою активность.

Протеин С - предшественник сериновой протеиназы, очень похожей на факторы IX, X, VII и протромбин. Он активируется тромбином, как и фактор XI. Однако при активации получившаяся сериновая протеиназа использует свою ферментативную активность не для того, чтобы активировать другие белки, а для того, чтобы их инактивировать. Активированный протеин С производит несколько протеолитических расщеплений в факторах свертывания Va и VIIIa, заставляя их полностью терять свою кофакторную активность. Таким образом, тромбин - продукт каскада свертывания - ингибирует свое собственное производство: это называется отрицательной обратной связью. И опять у нас регуляторный вопрос: зачем тромбин одновременно ускоряет и замедляет собственную активацию?

Эволюционные истоки свертывания

Формирование защитных систем крови началось у многоклеточных свыше миллиарда лет назад - собственно, как раз в связи с появлением крови. Сама система свертывания является результатом преодоления другой исторической вехи - возникновения позвоночных около пятисот миллионов лет назад. Скорее всего, эта система возникла из иммунитета. Появление очередной системы иммунных реакций, которая боролась с бактериями путем обволакивания их фибриновым гелем, привело к случайному побочному результату: кровотечение стало прекращаться быстрее. Это позволило увеличивать давление и силу потоков в кровеносной системе, а улучшение сосудистой системы, то есть улучшение транспорта всех веществ, открыло новые горизонты развития. Кто знает, не было ли появление свертывания тем преимуществом, которое позволило позвоночным занять свое нынешнее место в биосфере Земли?

У ряда членистогих (таких, как рак-мечехвост) свертывание также существует, но оно возникло независимо и осталось на иммунологических ролях. Насекомые, как и прочие беспозвоночные, обычно обходятся более слабой разновидностью системы остановки кровотечения, основанной на агрегации тромбоцитов (точнее, амебоцитов - дальних родственников тромбоцитов). Этот механизм вполне функционален, но накладывает принципиальные ограничения на эффективность сосудистой системы, - так же, как трахейная форма дыхания ограничивает максимально возможный размер насекомого.

К сожалению, существа с промежуточными формами системы свертывания почти все вымерли. Единственным исключением являются бесчелюстные рыбы: геномный анализ системы свертывания у миноги показал, что она содержит гораздо меньше компонентов (то есть, устроена заметно проще) . Начиная же с челюстных рыб и до млекопитающих системы свертывания очень похожи. Системы клеточного гемостаза также работают по схожим принципам, несмотря на то, что мелкие, безъядерные тромбоциты характерны только для млекопитающих. У остальных позвоночных тромбоциты - крупные клетки, имеющие ядро.

Подводя итог, система свертывания изучена очень хорошо. В ней уже пятнадцать лет не открывали новых белков или реакций, что для современной биохимии составляет вечность. Конечно, нельзя совсем исключить вероятность такого открытия, но пока что не существует ни одного явления, которое мы не могли бы объяснить при помощи имеющихся сведений. Скорее наоборот, система выглядит гораздо сложнее, чем нужно: мы напомним, что из всего этого (довольно громоздкого!) каскада собственно желированием занимается только одна реакция, а все остальные нужны для какой-то непонятной регуляции.

Именно поэтому сейчас исследователи-коагулологи, работающие в самых разных областях - от клинической гемостазиологии до математической биофизики, - активно переходят от вопроса «Как устроено свертывание?» к вопросам «Почему свертывание устроено именно так?» , «Как оно работает?» и, наконец, «Как нам нужно воздействовать на свертывание, чтобы добиться желаемого эффекта?» . Первое, что необходимо сделать для ответа - научиться исследовать свертывание целиком, а не только отдельные реакции.

Как исследовать свертывание?

Для изучения свертывания создаются различные модели - экспериментальные и математические. Что именно они позволяют получить?

С одной стороны, кажется, что самым лучшим приближением для изучения объекта является сам объект. В данном случае - человек или животное. Это позволяет учитывать все факторы, включая ток крови по сосудам, взаимодействия со стенками сосудов и многое другое. Однако в этом случае сложность задачи превосходит разумные границы. Модели свертывания позволяют упростить объект исследования, не упуская его существенных особенностей.

Попытаемся составить представление о том, каким требованиям должны отвечать эти модели, чтобы корректно отражать процесс свертывания in vivo .

В экспериментальной модели должны присутствовать те же биохимические реакции, что и в организме. Должны присутствовать не только белки системы свертывания, но и прочие участники процесса свертывания - клетки крови, эндотелия и субэндотелия. Система должна учитывать пространственную неоднородность свертывания in vivo : активацию от поврежденного участка эндотелия, распространение активных факторов, присутствие тока крови.

Рассмотрение моделей свертывания естественно начать с методов исследования свертывания in vivo . Основа практически всех используемых подходов такого рода заключается в нанесении подопытному животному контролируемого повреждения с тем, чтобы вызвать гемостатическую или тромботическую реакцию. Данная реакция исследуется различными методами:

  • наблюдение за временем кровотечения;
  • анализ плазмы, взятой у животного;
  • вскрытие умерщвленного животного и гистологическое исследование;
  • наблюдение за тромбом в реальном времени с использованием микроскопии или ядерного магнитного резонанса (рис. 4).

Рисунок 4. Формирование тромба in vivo в модели тромбоза, индуцированного лазером. Эта картинка воспроизведена из исторической работы, где ученые впервые смогли пронаблюдать развитие тромба «вживую». Для этого в кровь мыши впрыснули концентрат флуоресцентно меченных антител к белкам свертывания и тромбоцитам, и, поместив животное под объектив конфокального микроскопа (позволяющего осуществлять трехмерное сканирование), выбрали доступную для оптического наблюдения артериолу под кожей и повредили эндотелий лазером. Антитела начали присоединяться к растущему тромбу, сделав возможным его наблюдение.

Классическая постановка эксперимента по свертыванию in vitro заключается в том, что плазма крови (или цельная кровь) смешивается в некоторой емкости с активатором, после чего производится наблюдение за процессом свертывания. По методу наблюдения экспериментальные методики можно разделить на следующие типы:

  • наблюдение за самим процессом свертывания;
  • наблюдение за изменением концентраций факторов свертывания от времени.

Второй подход дает несравненно больше информации. Теоретически, зная концентрации всех факторов в произвольный момент времени, можно получить полную информацию о системе. На практике исследование даже двух белков одновременно дорого и связано с большими техническими трудностями.

Наконец, свертывание в организме протекает неоднородно. Формирование сгустка запускается на поврежденной стенке, распространяется с участием активированных тромбоцитов в объеме плазмы, останавливается с помощью эндотелия сосудов. Адекватно изучить эти процессы с помощью классических методов невозможно. Вторым важным фактором является наличие потока крови в сосудах.

Осознание этих проблем привело к появлению, начиная с 1970-х годов, разнообразных проточных экспериментальных систем in vitro . Несколько больше времени потребовалось на осознание пространственных аспектов проблемы. Только в 1990-е годы стали появляться методы, учитывающие пространственную неоднородность и диффузию факторов свертывания, и только в последнее десятилетие они стали активно использоваться в научных лабораториях (рис. 5).

Рисунок 5. Пространственный рост фибринового сгустка в норме и патологии. Свертывание в тонком слое плазмы крови активировалось иммобилизованным на стенке тканевым фактором. На фотографиях активатор расположен слева . Серая расширяющаяся полоса - растущий фибриновый сгусток.

Наряду с экспериментальными подходами для исследований гемостаза и тромбоза также используются математические модели (этот метод исследований часто называется in silico ). Математическое моделирование в биологии позволяет устанавливать глубокие и сложные взаимосвязи между биологической теорией и опытом. Проведение эксперимента имеет определенные границы и сопряжено с рядом трудностей. Кроме того, некоторые теоретически возможные эксперименты неосуществимы или запредельно дороги вследствие ограничений экспериментальной техники. Моделирование упрощает проведение экспериментов, так как можно заранее подобрать необходимые условия для экспериментов in vitro и in vivo , при которых интересующий эффект будет наблюдаем.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос - а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада - цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид t N , где t - время. Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен.

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации - свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Подведение итогов

В последние годы сложность системы свертывания постепенно становится менее загадочной. Открытие всех существенных компонентов системы, разработка математических моделей и использование новых экспериментальных подходов позволили приоткрыть завесу тайны. Структура каскада свертывания расшифровывается, и сейчас, как мы видели выше, практически для каждой существенной части системы выявлена или предложена роль, которую она играет в регуляции всего процесса.

На рисунке 7 представлена наиболее современная попытка пересмотреть структуру системы свертывания. Это та же схема, что и на рис. 1, где разноцветным затенением выделены части системы, отвечающие за разные задачи, как обсуждалось выше. Не все в этой схеме является надежно установленным. Например, наше теоретическое предсказание, что активация фактора VII фактором Xa позволяет свертыванию пороговым образом отвечать на скорость потока, остается пока еще непроверенным в эксперименте.

Оглавление темы "Эозинофилы. Моноциты. Тромбоциты. Гемостаз. Система свертывания крови. Противосвертывающая система крови.":
1. Эозинофилы. Функции эозинофилов. Функции эозинофильных лейкоцитов. Эозинофилия.
2. Моноциты. Макрофаги. Функции моноцитов - макрофагов. Нормальное количество моноцитов - макрофагов.
3. Регуляция гранулоцитопоэза и моноцитопоэза. Гранулоцитарные колониестимулирующие факторы. Кейлоны.
4. Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.
5. Тромбоцитопоэз. Регуляция тромбоцитопоэза. Тромбопоэтин (тромбоцитопоэтин). Мегакариоциты. Тромбоцитопения.
6. Гемостаз. Механизмы свертывания крови. Тромбоцитарный гемостаз. Тромбоцитарная реакция. Первичный гемостаз.

8. Внутренний путь активации свертывания крови. Тромбин.
9. Противосвертывающая система крови. Противосвертывающие механизмы крови. Антитромбин. Гепарин. Протеины. Простациклин. Тромбомодулин.
10. Тканевый активатор плазминогена. Эктоэнзимы. Роль эндотелия в противосвертывающей системе. Тканевый фактор. Ингибитор активатора плазминогена. Фактор Виллебранда. Антикоагулянты.

Останавливает окончательно кровотечение из поврежденных сосудов образование фибриновых тромбов , закрывающих их просвет. В плазме крови содержатся факторы свертывания в виде неактивных форм ферментов, обозначаемых римскими цифрами: I, II, VIII, IX, X, XI, XII, XIII (табл. 7.2). Повреждение тканей, эндотелия сосуда или клеток крови вызывает каскадную реакцию активации этих ферментов, которая приводит к образованию фибриновых нитей, формирующих сеть тромба .

Таблица 7.2. Факторы свертывания крови

Начало каскадной реакции связано с контактом неактивных форм факторов свертывания с поврежденными тканями, окружающими сосуды, (внешний путь активации свертывания крови ), а также при контакте крови с поврежденными тканями сосудистой стенки или с поврежденными самими клетками крови (внутренний путь активации свертывания крови).

Внешний путь . Мембраны поврежденных клеток тканей выделяют в плазму крови тканевый фактор - трансмембранный белок . Тканевой фактор с активированным им фактором свертывания крови VII активируют фактор X. Фактор Ха (а-активированный) в присутствии ионов кальция немедленно соединяется с тканевыми фосфолипидами и фактором V. Образовавшийся комплекс через несколько секунд после его формирования превращает часть протромбина в тромбин. Тромбин начинает действовать как протеолитический фермент на фибриноген, а также активировать фактор V, тем самым дополнительно ускоряя превращение протромбина в тромбин.

  • Введение

    Современные представления о системе регуляции агрегантного состояния крови позволяют выделить основные механизмы её деятельности:

    • Механизмы гемостаза (их несколько) обеспечивают остановку кровотечения.
    • Механизмы антисвёртывания поддерживают жидкое состояние крови.
    • Механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (реканализацию).

    В обычном состоянии слегка преобладают противосвёртывающие механизмы, однако при необходимости предотвратить кровопотерю физиологический баланс быстро смещается в сторону прокоагулянтов. Если этого не происходит, развивается повышенная кровоточивость (геморрагические диатезы), преобладание прокоагулянтной активности крови чревато развитием тромбозов и эмболий. Выдающийся немецкий патолог Рудольф Вирхов выделил три группы причин, ведущих к развитию тромбоза (классическая триада Вирхова):

    • Повреждение сосудистой стенки.
    • Изменение состава крови.
    • Замедление кровотока (стаз).

    В структуре артериальных тромбозов преобладает первая причина (атеросклероз); замедление кровотока и преобладание прокоагулянтных факторов – основные причины венозных тромбозов.

    Различают два механизма гемостаза:

    • Сосудисто-тромбоцитарный (микроциркуляторный, первичный).
    • Коагуляционный (вторичный, свёртывание крови).

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах (в сосудах микроциркуляторного русла), где имеются низкое кровяное давление и малый просвет сосудов (до 100 мкм). В них остановка кровотечения может произойти за счёт:

    • Сокращения стенок сосудов.
    • Образования тромбоцитарной пробки.
    • Сочетания того и другого.

    Коагуляционный гемостаз обеспечивает остановку кровотечения в более крупных сосудах (артериях и венах). В них остановка кровотечения осуществляется за счёт свёртывания крови (гемокоагуляции).

    Полноценная гемостатическая функция возможна только при условии тесного взаимодействия сосудисто-тромбоцитарного и гемокоагуляционного механизмов гемостаза. Тромбоцитарные факторы принимают активное участие в коагуляционном гемостазе, обеспечивают конечный этап формирования полноценной гемостатической пробки – ретракцию кровяного сгустка. В то же время плазменные факторы непосредственно влияют на агрегацию тромбоцитов. При ранениях как мелких, так и крупных сосудов происходит образование тромбоцитарной пробки с последующим свёртыванием крови, организацией фибринового сгустка, а затем – восстановление просвета сосудов (реканализация путём фибринолиза).

    Реакция на повреждение сосуда зависит от разнообразных процессов взаимодействия между сосудистой стенкой, циркулирующими тромбоцитами, факторами свёртывания крови, их ингибиторами и фибринолитической системой. Гемостатический процесс модифицируется посредством положительной и отрицательной обратной связи, которая поддерживает стимуляцию констрикции сосудистой стенки и образование комплексов тромбоциты-фибрин, а также растворение фибрина и релаксацию сосудов, что позволяет вернуться к нормальному состоянию.

    Для того чтобы кровоток в обычном состоянии не нарушался, а при необходимости наступало эффективное свёртывание крови, необходимо поддержание равновесия между факторами плазмы, тромбоцитов и тканей, способствующими свёртыванию и тормозящими его. Если это равновесие нарушается, возникает либо кровотечение (геморрагические диатезы), либо повышенное тромбообразование (тромбозы).

  • Сосудисто-тромбоцитарный гемостаз

    У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов – «белым тромбом» (рис. 1).

    Рисунок 1. Сосудисто-тромбоцитарный гемостаз. 1 – повреждение эндотелия; 2 – адгезия тромбоцитов; 3 – активация тромбоцитов, выделение биологически активных веществ из их гранул и образование медиаторов – производных арахидоновой кислоты; 4 – изменение формы тромбоцитов; 5 – необратимая агрегация тромбоцитов с последующим формированием тромба. ФВ – фактор Виллебранда, ТФР – тромбоцитарный фактор роста, TXA 2 – тромбоксан А 2 , АДФ – аденозиндифосфат, ФАТ – фактор активации тромбоцитов. Пояснения в тексте .

    Тромбоциты (кровяные пластинки, нормальное содержание в крови 170-400х10 9 /л) представляют собой плоские безъядерные клетки неправильной округлой формы диаметром 1-4 мкм. Кровяные пластинки образуются в красном костном мозге путём отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней и затем разрушаются в селезёнке.

    В крови тромбоциты пребывают в неактивированном состоянии. Их активация наступает в результате контакта с активирующей поверхностью и действия некоторых факторов свёртывания. Активированные тромбоциты выделяют ряд веществ, необходимых для гемостаза.

    • Клиническое значение нарушений в сосудисто-тромбоцитарном звене гемостаза

      При уменьшении количества тромбоцитов (тромбоцитопении) или нарушении их структуры (тромбоцитопатии) возможно развитие геморрагического синдрома с петехиально-пятнистым типом кровоточивости. Тромбоцитоз (увеличение содержания тромбоцитов) предрасполагает к гиперкоагуляции и тромбозам. К методам оценки состояния сосудисто-тромбоцитарного гемостаза относят определение резистентности (ломкости) капилляров (манжеточная проба Румпель-Лееде-Кончаловского, симптомы жгута и щипка), время кровотечения, подсчёт числа тромбоцитов, оценку ретракции сгустка крови, определение ретенции (адгезивности) тромбоцитов, исследование агрегации тромбоцитов.

      К агрегации тромбоцитов даже в отсутствии внешних повреждений могут приводить дефекты эндотелиальной оболочки сосудов. С целью предупреждения тромбозов назначают препараты, подавляющие агрегацию тромбоцитов - антиагреганты. Ацетилсалициловая кислота (аспирин) селективно и необратимо ацетилирует фермент циклооксигеназу (ЦОГ), катализирующую первый этап биосинтеза простаноидов из арахидоновой кислоты. В невысоких дозах препарат влияет преимущественно на изоформу ЦОГ-1. В результате в циркулирующих в крови тромбоцитах прекращается образование тромбоксана A 2 , обладающего проагрегантным и сосудосуживающим действием. Метаболиты производных тиенопиридина (клопидогрел, тиклопидин) необратимо модифицируют рецепторы 2PY 12 на мембране тромбоцитов, в результате блокируется связь АДФ с его рецептором на мембране тромбоцита, что приводит к угнетению агрегации тромбоцитов. Дипиридамол угнетает фермент фосфодиэстеразу в тромбоцитах, что приводит к накоплению в тромбоцитах цАМФ, обладающего антиагрегантным действием. Блокаторы гликопротеинов IIb/IIIa тромбоцитов (абциксимаб, тирофибан и эптифибатид) воздействуют на конечную стадию агрегации, блокируя участок взаимодействия гликопротеинов IIb/IIIa на поверхности тромбоцитов с фибриногеном и другими адгезивными молекулами.

      В настоящее время проходят клинические испытания новых антиагрегантов (тикагрелор, прасугрел).

      В качестве местного кровоостанавливающего средства используется губка гемостатическая коллагеновая, усиливающая адгезию и активацию тромбоцитов, а также запускающая коагуляционный гемостаз по внутреннему пути.

  • Коагуляционный гемостаз
    • Общие положения

      После того как образуется тромбоцитарный сгусток, степень сужения поверхностных сосудов уменьшается, что могло бы привести к вымыванию сгустка и возобновлению кровотечения. Однако к этому времени уже набирают достаточную силу процессы коагуляции фибрина в ходе вторичного гемостаза, обеспечивающего плотную закупорку повреждённых сосудов тромбом («красным тромбом»), содержащим не только тромбоциты, но и другие клетки крови, в частности эритроциты (рис. 9).

      Рисунок 9. Красный тромб – эритроциты в трёхмерной фибриновой сети. (источник – сайт www.britannica.com).

      Постоянная гемостатическая пробка формируется при образовании тромбина посредством активации свёртывания крови. Тромбин играет важную роль в возникновении, росте и локализации гемостатической пробки. Он вызывает необратимую агрегацию тромбоцитов (неразрывная связь коагуляционного и сосудисто-тромбоцитарного звеньев гемостаза) (рис. 8) и отложение фибрина на тромбоцитарных агрегатах, образующихся в месте сосудистой травмы. Фибрино-тромбоцитарная сеточка является структурным барьером, предотвращающим дальнейшее вытекание крови из сосуда, и инициирует процесс репарации ткани.

      Свёртывающая система крови – это фактически несколько взаимосвязанных реакции, протекающих при участии протеолитических ферментов. На каждой стадии данного биологического процесса профермент (неактивная форма фермента, предшественник, зимоген) превращается в соответствующую сериновую протеазу. Сериновые протеазы гидролизуют пептидные связи в активном центре, основу которого составляет аминокислота серин. Тринадцать таких белков (факторы свёртывания крови) составляют систему свёртывания (таблица 1; их принято обозначать римскими цифрами (например, ФVII – фактор VII), активированную форму обозначают прибавлением индекса «а» (ФVIIа – активированный фактор VIII). Из них семь активируются до сериновых протеаз (факторы XII, XI, IX, X, II, VII и прекалликреин), три являются кофакторами этих реакций (факторы V, VIII и высокомолекулярный кининоген ВМК), один – кофактор/рецептор (тканевой фактор, фактор III), ещё один – трасглутаминаза (фактор XIII) и, наконец, фибриноген (фактор I) является субстратом для образования фибрина, конечного продукта реакций свёртывания крови (таблица 1).

      Для пострибосомального карбоксилирования терминальных остатков глутаминовой кислоты факторов свёртывания II, VII, IX, X (витамин К-зависимые факторы), а также двух ингибиторов свёртывания (протеинов C (си) и S) необходим витамин К. В отсутствии витамина К (или на фоне приёма непрямых антикоагулянтов, например, варфарина) печень содержит лишь биологически неактивные белковые предшественники перечисленных факторов свёртывания. Витамин К – необходимый кофактор микросомальной ферментной системы, которая активирует эти предшественники, превращая их множественные N-концевые остатки глутаминовой кислоты в остатки γ -карбоксиглутаминовой кислоты. Появление последних в молекуле белка придёт ему способность связывать ионы кальция и взаимодействовать с мембранными фосфолипидами, что необходимо для активации указанных факторов. Активная форма витамина К – восстановленный гидрохинон, который в присутствии O 2 , CO 2 и микросомальной карбоксилазы превращается в 2,3-эпоксид с одновременным γ-карбоксилированием белков. Для продолжения реакций γ –карбоксилирования и синтеза биологически-активных белков витамин К опять должен восстановиться в гидрохинон. Под действием витамин-К-эпоксидредуктазы (которую ингибируют терапевтические дозы варфарина) из 2,3-эпоксида вновь образуется гидрохиноновая форма витамина К (рис. 13).

      Для осуществления многих реакций коагуляционного гемостаза необходимы ионы кальция (Ca ++ , фактор свёртывания IV, рис. 10). Для предотвращения преждевременного свёртывания крови in vitro при подготовке к выполнению ряда коагуляционных тестов к ней добавляют вещества, связывающие кальций (оксалаты натрия, калия или аммония, цитрат натрия, хелатообразующее соединение этилендиаминтетраацетат (ЭДТА)).

      Таблица 1. Факторы свёртывания крови (а – активная форма) .

      Фактор Название Наиболее важное место образования T ½ (период полусуществования) Средняя концентрация в плазме, мкмоль/мл Свойства и функции Синдром недостаточности
      Название Причины
      I Фибриноген Печень 4-5 дней 8,8 Растворимый белок, предшественник фибриногена Афибриногенемия, недостаточность фибриногена Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления, поражение печёночной паренхимы.
      II Протромбин 3 дня 1,4 α 1 -глобулин, профермент тромбина (протеаза) Гипопротромбинемия Наследование по аутосомно-рецессивному типу (хромосома 11); поражения печени, недостаточность витамина К, коагулопатия потребления.
      III Тканевой тромбопластин (тканевой фактор) Клетки тканей Фосфолипропротеин; активен во внешней системе свёртывания
      IV Кальций (Са ++) 2500 Необходим для активации большинства факторов свёртывания
      V Проакцелерин, АК-глобулин Печень 12-15 ч. 0,03 Растворимый b-глобулин, связывается с мембраной тромбоцитов; активируется фактором IIa и Са ++ ; Va служит компонентом активатора протромбина Парагемофилия, гипопроакцелеринемия Наследование по аутосомно-рецессивному типу (хромосома 1); поражения печени.
      VI Изъят из классификации (активный фактор V)
      VII Проконвертин Печень (витамин К-зависимый синтез) 4-7 ч. 0,03 α 1 -глобулин, профермент (протеаза); фактор VIIа вместе с фактором III и Са ++ активирует фактор X во внешней системе Гипопроконвертинемия Наследование по аутосомно-рецессивному типу (хромосома 13); недостаточность витамина К.
      VIII Антигемофильный глобулин Различные ткани, в т.ч. эндотелий синусоид печени 8-10 ч. b 2 -глобулин, образует комплекс с фактором Виллебранда; активируется фактором IIa и Са ++ ; фактор VIIIa служит кофактором в превращении фактора X в фактор Xa Гемофилия А (классическая гемофилия); синдром Виллебранда Наследование по рецессивному типу, сцепление с X-хромосомой (половой); Наследование обычно по аутосомно-доминантному типу.
      IX Фактор Кристмаса 24 часа 0,09 α 1 -глобулин, контакт-чувствительный профермент (протеаза); фактор IXа вместе с фактором пластинок 3, фактором VIIIa и Са ++ активирует фактор X dj внутренней системе Гемофилия B Наследование по рецессивному типу, сцепленное с X-хромосомой (половой).
      X Фактор Стюарта-Прауэра Печень Печень (витамин К-зависимый синтез) 2 дня 0,2 α 1 -глобулин, профермент (протеаза); фактор Xa служит компонентом активатора протромбина Недостаточность фактора X Наследование по аутосомноу-рецессивному типу (хромосома 13)
      XI Плазменный предшественник трмбопластина (ППТ) Печень 2-3 дня 0,03 γ-глобулин, контакт-чувствительный профермент (протеаза); фактор XIa вместе с Са ++ активирует фактор IX Недостаточность ППТ Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления.
      XII Фактор Хагемана Печень 1 день 0,45 b-глобулин, контакт-чувствительный профермент (протеаза) (изменяет форму при контакте с поверхностями); активируется калликреином, коллагеном и др.; активирует ПК, ВМК, фактор XI Синдром Хагемана (обычно не проявляется клинически) Наследование обычно по аутосомно-рецессивному типу (хромосома 5).
      XIII Фибрин-стабилизирующий фактор Печень, тромбоциты 8 дней 0,1 b-глобулин, профермент (трансамидаза); фактор XIIIa вызывает переплетение нитей фибрина Недостаточность фактора XIII Наследование по аутосомно-рецессивному типу (хромосомы 6, 1); коагулопатия потребления.
      Прекалликреин (ПК), фактор Флетчера Печень 0,34 b-глобулин, профермента (протеаза); активируется фактором XIIa; калликреин способствует активации факторов XII и XI Наследование (хромосома 4)
      Высокомолекулярный кининоген (ВМК) (фактор Фитцжеральда, фактор Вильямса, фактор Фложека) Печень 0,5 α 1 -глобулин; способствует контактной активации факторов XII и XI Обычно клинически не проявляется Наследование (хромосома 3)

      Основы современной ферментной теории свёртывания крови были заложены в конце XIX – начале XX столетия профессором Тартуского (Дерптского) университета Александром-Адольфом Шмидтом (1877 г.) и уроженцем Санкт-Петербурга Паулом Моравитцем (1904 г.), а также в работе С. Мурашева о специфичности действия фибрин-ферментов (1904 г.). Основные этапы свёртывания крови, приведённые в схеме Моравитца, верны и поныне. Вне организма кровь свёртывается за несколько минут. Под действием «активатора протромбина» (тромбокиназы), белок плазмы протромбин превращается в тромбин. Последний вызывает ращепление растворённого в плазме фибриногена с образованием фибрина, волокна которого образуют основу тромба. В результате этого кровь превращается из жидкости в студенистую массу. С течением времени открывались всё новые и новые факторы свёртывания и в 1964 году двумя независимыми группами учёных (Davie EW, Ratnoff OD; Macfarlane RG) была предложена ставшая классической модель коагуляционного каскада (водопада), представленная во всех современных учебниках и руководствах. Эта теория подробно изложена ниже. Использование подобного рода схемы свёртывания крови оказалось удобным для правильного толкования комплекса лабораторных тестов (таких как АЧТВ, ПВ), применяющихся при диагностике различных геморрагических диатезов коагуляционного генеза (например, гемофилии А и B). Однако модель каскада не лишена недостатков, что послужило поводом для разработки альтернативной теории (Hoffman M, Monroe DM) – клеточной модели свёртывания крови (см. соответствующий раздел).

    • Модель коагуляционного каскада (водопада)

      Механизмы инициации свёртывания крови подразделяют на внешние и внутренние. Такое деление искусственно, поскольку оно не имеет места in vivo, но данный подход облегчает интерпретацию лабораторных тестов in vitro.

      Большинство факторов свёртывания циркулируют в крови в неактивной форме. Появление стимулятора коагуляции (триггера) приводит к запуску каскада реакций, завершающихся образованием фибрина (рис. 10). Триггер может быть эндогенным (внутри сосуда) или экзогенным (поступающим из тканей). Внутренний путь активации свёртывания крови определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. Когда процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, говорят о внешней системе свёртывания крови. В результате запуска реакций системы гемостаза независимо от источника активации образуется фактор Xa, обеспечивающий превращение протромбина в тромбин, а последний катализирует образование фибрина из фибриногена. Таким образом, и внешний и внутренний пути замыкаются на единый – общий путь свёртывания крови.

      • Внутренний путь активации свёртывания крови

        Компонентами внутреннего пути являются факторы XII, XI, IX, XIII, кофакторы – высокомолекулярный кининоген (ВМК) и прекалликреин (ПК), а также их ингибиторы.

        Внутренний путь (рис. 10 п. 2) запускается при повреждении эндотелия, когда обнажается отрицательно заряженная поверхность (например, коллаген) в пределах сосудистой стенки. Контактируя с такой поверхностью, активируется ФXII (образуется ФXIIa). Фактор XIIa активирует ФXI и превращает прекалликреин (ПК) в калликреин, который активирует фактор XII (петля положительной обратной связи). Механизм взаимной активации ФXII и ПК отличается большей быстротой по сравнению с механизмом самоактивации ФXII, что обеспечивает многократное усиление системы активации. Фактор XI и ПК связываются с активирующей поверхностью посредством высокомолекулярного кининогена (ВМК). Без ВМК активации обоих проферментов не происходит. Связанный ВМК может расщепляться калликреином (К) или связанным с поверхностью ФXIIa и инициировать взаимную активацию систем ПК-ФXII.

        Фактор XIa активирует фактор IX. Фактор IX может также активироваться под действием комплекса ФVIIa/ФIII (перекрёст с каскадом внешнего пути), причём считается, что in vivo это доминирующий механизм. Активированный ФIXa требует наличия кальция и кофактора (ФVIII), для прикрепления к тромбоцитарному фосфолипиду (тромбоцитарному фактору 3 – см. раздел сосудисто-тромбоцитарный гемостаз) и превращения фактора X в фактор Xa (переход с внутреннего на общий путь). Фактор VIII действует в качестве мощного ускорителя завершающей ферментативной реакции.

        Фактор VIII, который также называют антигемофильным фактором, кодируется большим геном, расположенным на конце X-хромосомы. Он активируется под действием тромбина (основной активатор), а также факторов IXa и Xa. ФVIII циркулирует в крови, будучи связанным с фактором фон Виллебранда (ФВ) – большим гликопротеином, продуцируемым эндотелиальными клетками и мегакариоцитами (см. также раздел сосудисто-тромбоцитарный гемостаз). ФВ служит внутрисосудистым белком-носителем для ФVIII. Связывание ФВ с ФVIII стабилизирует молекулу ФVIII, увеличивает её период полусуществования внутри сосуда и способствует её транспорту к месту повреждения. Однако чтобы активированный фактор VIII мог проявить свою кофакторную активность, он должен отсоединиться от ФВ. Воздействие тромбина на комплекс ФVIII/ФВ приводит к отделению ФVIII от несущего протеина и расщеплению на тяжёлую и лёгкую цепи ФVIII, которые важны для коагулянтной активность ФVIII.

      • Общий путь свёртывания крови (образование тромбина и фибрина)

        Внешний и внутренний пути свёртывания крови замыкаются на активации ФX, с образования ФXa начинается общий путь (рис. 10 п. 3). Фактор Xa активирует ФV. Комплекс факторов Xa, Va, IV (Ca 2+) на фосфолипидной матрице (главным образом это тромбоцитарный фактор 3 – см. сосудисто-тромбоцитарный гемостаз) является протромбиназой, которая активирует протромбин (превращение ФII в ФIIa).

        Тромбин (ФIIa) представляет собой пептидазу, особенно эффективно расщепляющую аргиниловые связи. Под действием тромбина наступает частичный протеолиз молекулы фибриногена. Однако функции тромбина не ограничиваются влиянием на фибрин и фибриноген. Он стимулирует агрегацию тромбоцитов, активирует факторы V, VII, XI и XIII (положительная обратная связь), а также разрушает факторы V, VIII и XI (петля отрицательная обратной связи), активирует фибринолитическую систему, стимулирует эндотелиальные клетки и лейкоциты. Он также вызывает миграцию лейкоцитов и регулирует тонус сосудов. Наконец, стимулируя рост клеток, способствует репарации тканей.

        Тромбин вызывает гидролиз фибриногена до фибрина. Фибриноген (фактор I) представляет собой сложный гликопротеин, состоящий из трёх пар неидентичных полипептидных цепей. Тромбин прежде всего расщепляет аргинин-глициновые связи фибриногена с образованием двух пептидов (фибринопептид А и фибринопептид B) и мономеров фибрина. Эти мономеры образуют полимер, соединяясь бок в бок (фибрин I) и удерживаясь рядом водородными связями (растворимые фибрин-мономерные комплексы – РФМК). Последующий гидролиз этих комплексов при действии тромбина приводит к выделению фибринопептида B. Кроме того, тромбин активирует ФXIII, который в присутствии ионов кальция связывает боковые цепи полимеров (лизин с глутаминовыми остатками) изопептидными ковалентными связями. Между мономерами возникают многочисленные перекрёстные связи, создающие сеть взаимодействующих фибриновых волокон (фибрин II), весьма прочных и способных удерживать тромбоцитарную массу на месте травмы.

        Однако на этой стадии трёхмерная сеть волокон фибрина, которая удерживает в больших количествах клетки крови и кровяные пластинки, всё ещё относительно рыхлая. Свою окончательную форму она принимает после ретракции: через несколько часов волокна фибрина сжимаются и из него как бы выдавливается жидкость – сыворотка, т.е. лишённая фибриногена плазма. На месте сгустка остаётся плотный красный тромб, состоящий из сети волокон фибрина с захваченными ею клетками крови. В этом процессе участвуют тромбоциты. В них содержится тромбостенин – белок, сходный с актомиозином, способный сокращаться за счёт энергии АТФ. Благодаря ретракции сгусток становится более плотным и стягивает края раны, что облегчает её закрытие клетками соединительной ткани.

    • Регуляция системы свертывания крови

      Активация свёртывания крови in vivo модулируется рядом регуляторных механизмов, которые ограничивают реакции местом повреждения и предотвращают возникновение массивного внутрисосудистого тромбоза. К регулирующим факторам относят: кровоток и гемодилюцию, клиренс, осуществляемый печенью и ретикулоэндотелиальной системой (РЭС), протеолитическое действие тромбина (механизм отрицательной обратной связи), ингибиторы сериновых протеаз.

      При быстром кровотоке происходит разбавление активных сериновых протеаз и транспорт их в печень для утилизации. Кроме того, диспергируются и отсоединяются периферические тромбоциты от тромбоцитарных агрегатов, что ограничивает размер растущей гемостатической пробки.

      Растворимые активные сериновые протеазы инактивируются и удаляются из кровообращения гепатоцитами и ретикулоэндотелиальными клетками печени (купферовскими клетками) и других органов.

      Тромбин в качестве фактора, ограничивающего свёртывание, разрушает факторы XI, V, VIII, а также инициирует активацию фибринолитической системы посредством белка C, что приводит к растворению фибрина, в том числе за счёт стимуляции лейкоцитов (клеточный фибринолиз – см. раздел « фибринолиз »).

      • Ингибиторы сериновых протеаз

        Процесс свёртывания крови строго контролируется присутствующими в плазме белками (ингибиторами), которые ограничивают выраженность протеолитических реакций и обеспечивают защиту от тромбообразования (рис. 11). Главными ингибиторами факторов свёртывания крови являются антитромбин III (АТ III, гепариновый кофактор I), гепариновый кофактор II (ГК II), протеин «си» (PC) и протеин «эс» (PS), ингибитор пути тканевого фактора (ИПТФ), протеаза нексин-1 (ПН-1), C1-ингибитор, α 1 -антитрипсин (α 1 -АТ) и α 2 -макроглобулин (α 2 -М). Большинство этих ингибиторов, за исключением ИПТФ и α 2 -М, относятся к серпинам (СЕРиновых Протеаз ИНгибиторы).

        Антитромбин III (АТ III) является серпином и основным ингибитором тромбина, ФXa и ФIXa, он также инактивирует ФXIa и ФXIIa (рис. 11). Антитромбин III нейтрализует тромбин и другие сериновые протеазы посредством ковалентного связывания. Скорость нейтрализации сериновых протеаз антитромбином III в отсутствии гепарина (антикоагулянта) невелика и существенно увеличивается в его присутствии (в 1000 – 100000 раз). Гепарин представляет собой смесь полисульфатированных эфиров гликозаминогликанов; он синтезируется тучными клетками и гранулоцитами, его особенно много в печени, лёгких, сердце и мышцах, а также в тучных клетках и базофилах. В терапевтических целях вводят синтетический гепарин (нефракционированный гепарин, низкомолекулярные гепарины). Гепарин образует с АТ III комплекс, называемый антитромбином II (АТ II), повышая тем самым эффективность АТ III и подавляя образование и действие тромбина. Кроме того, гепарин служит активатором фибринолиза и поэтому способствует растворению сгустков крови. Значение АТ III, как основного модулятора гемостаза подтверждается наличием тенденции к тромбообразованию у лиц с врождённым или приобретённым дефицитом АТ III.

        Протеинс си (PC) – витамин К-зависимый белок, синтезируемый гепатоцитами. Циркулирует в крови в неактивной форме. Активируется небольшим количеством тромбина. Эта реакция значительно ускоряется тромбомодулином (ТМ) – поверхностным белком эндотелиальных клеток, который связывается с тромбином. Тромбин в комплексе с тромбомодулином становится антикоагулянтным белком, способным активировать сериновую протеазу – PC (петля отрицательной обратной связи). Активированный PC в присутствии своего кофактора – протеина S (PS) расщепляет и инактивирует ФVa и ФVIIIa (рис. 11). PC и PS являются важными модуляторами активации свёртывания крови и их врождённый дефицит связан со склонностью к тяжёлым тромботическим нарушениям. Клиническое значение PC доказывает повышенное тромбообразование (тромбофилия) у лиц с врождённой патологией ФV (Лейденская мутация – замена гуанина 1691 аденином, что приводит к замещению аргинина глутамином в позиции 506 аминокислотной последовательности белка). Такая патология ФV устраняет сайт, по которому происходит расщепление активированным протеином C, что мешает инактивации фактора V и способствует возникновению тромбоза.

        Активированный PC посредством механизма обратной связи подавляет продукцию эндотелиальными клетками ингибитора активатора плазминогена-1 (ИАП-1), оставляя без контроля тканевой активатор плазминогена (ТАП – см. разле фибринолиз). Это косвенно стимулирует фибринолитическую систему и усиливает антикоагулянтную активность активированного PC.

        α 1 -антитрипсин (α 1 -АТ) нейтрализует ФXIa и активированный PC.

        С1-ингибитор (С1-И) также является серпином и главным ингибитором сериновых ферментов контактной системы. Он нейтрализует 95% ФXIIa и более 50% всего калликреина, образующегося в крови. При дефиците С1-И возникает ангионевротический отёк. ФXIa инактивируется в основном α1-антитрипсином и АТ III.

        Гепариновый кофактор II (ГК II) – серпин, ингибирующий только тромбин в присутствии гепарина или дерматан-сульфата. ГК II находится преимущественно во внесосудистом пространстве, где локализуется дерматан-сульфат, и именно здесь может играть решающую роль в ингибировании тромбина. Тромбин способен стимулировать пролиферацию фибробластов и других клеток, хемотаксис моноцитов, облегчать адгезию нейтрофилов к эндотелиальным клеткам, ограничивать повреждение нервных клеток. Способность ГК II блокировать эту деятельность тромбина играет определённую роль в регулировании процессов заживления ран, воспаления или развития нервной ткани.

        Протеаза нексин-1 (ПН-1) – серпин, ещё один вторичный ингибитор тромбина, предотвращающий его связывание с клеточной поверхностью.

        Ингибитор пути тканевого фактора (ИПТФ) представляет собой куниновый ингибитор свёртывания (кунины гомологичны ингибитору панкреатического трипсина – апротинину). Синтезируется главным образом эндотелиальными клетками и в меньшей степени – мононуклеарами и гепатоцитами. ИПТФ связывается с ФXa, инактивируя его, а затем комплекс ИПТФ-ФXa инактивирует комплекс ТФ-ФVIIa (рис. 11). Нефракционированный гепарин, низкомолекулярные гепарины стимулируют выделение ИПТФ и усиливают его антикоагулянтную активность.

        Рисунок 11. Действие ингибиторов коагуляции. ФЛ – фосфолипиды. Пояснения в тексте .

    • Фибринолиз

      Конечная стадия в репаративном процессе после повреждения кровеносного сосуда происходит за счёт активации фибринолитической системы (фибринолиза), что приводит к растворению фибриновой пробки и началу восстановления сосудистой стенки.

      Растворение кровяного сгустка – такой же сложный процесс, как и его образование. В настоящее время считается, что даже в отсутствие повреждения сосудов постоянно происходит превращение небольшого количества фибриногена в фибрин. Это превращение уравновешивается непрерывно протекающим фибринолизом. Лишь в том случае, когда свёртывающая система дополнительно стимулируется в результате повреждения ткани, выработка фибрина в области повреждения начинает преобладать и наступает местное свёртывание.

      Существуют два главных компонента фибринолиза: фибринолитическая активность плазмы и клеточный фибринолиз.

      • Фибринолитическая система плазмы

        Фибринолитическая система плазмы (рис. 12) состоит из плазминогена (профермент), плазмина (фермент), активаторов плазминогена и соответствующих ингибиторов. Активация фибринолитической системы приводит к образованию плазмина – мощного протеолитического фермента, обладающего разнообразным действием in vivo.

        Предшественник плазмина (фибринолизина) – плазминоген (профибринолизин) представляет собой гликопротеин, продуцируемый печенью, эозинофилами и почками. Активация плазмина обеспечивается механизмами, аналогичными внешней и внутренней свёртывающим системам. Плазмин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путём гидролиза растворимые пептиды, которые тормозят действие тромбина (рис. 11) и, таким образом, препятствуют дополнительному образованию фибрина. Плазмин расщепляет также другие факторы свёртывания: фибриноген, факторы V, VII, VIII, IX, X, XI и XII, фактор Виллебранда и тромбоцитарые гликопротеины. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свёртываемость крови. Он также активирует компоненты каскада комплемента (C1, C3a, C3d, C5).

        Превращение плазминогена в плазмин катализируется активаторами плазминогена и строго регулируется различными ингибиторами. Последние инактивируют как плазмин, так и активаторы плазминогена.

        Активаторы плазминогена образуются или сосудистой стенкой (внутренняя активация), или тканями (внешняя активация). Внутренний путь активации включает активацию белков контактной фазы: ФXII, XI, ПК, ВМК и калликреина. Это важный путь активации плазминогена, но основной – через ткани (внешняя активация); он происходит в результате действия тканевого активатора плазминогена (ТАП), выделяемого эндотелиальными клетками. ТАП также продуцируется другими клетками: моноцитами, мегакариоцитами и мезотелиальными клетками.

        ТАП представляет собой сериновую протеазу, которая циркулирует в крови, образуя комплекс со своим ингибитором, и имеет высокое сродство к фибрину. Зависимость ТАП от фибрина ограничивает образование плазмина зоной аккумуляции фибрина. Как только небольшое количество ТАП и плазминогена соединилось с фибрином, каталическое действие ТАП на плазминоген многократно усиливается. Затем образовавшийся плазмин разлагает фибрин, обнажая новые лизиновые остатки, с которыми связывается другой активатор плазминогена (одноцепочечная урокиназа). Плазмин превращает эту урокиназу в иную форму – активную двуцепочечную, вызывая дальнейшую трансформацию плазминогена в плазмин и растворение фибрина.

        Одноцепочечная урокиназа выявляется в большом количестве в моче. Как и ТАП, она относится к сериновым протеазам. Основная функция этого фермента проявляется в тканях и заключается в разрушении внеклеточного матрикса, что способствует миграции клеток. Урокиназа продуцируется фибробластами, моноцитами/макрофагами и эндотелиальными клетками. В отличие от ТАП циркулирует в не связанной с ИАП форме. Она потенцирует действие ТАП, будучи введённой после (но не до) ТАП.

        Как ТАП, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и пспользуются в качестве лекарственны средств (рекомбинантный тканевой активатор плазминогена, урокиназа). Другими активаторами плазминогена (нефизиологическими) являются стрептокиназа (продуцируемая гемолитическим стрептококком), антистрептлаза (комплекс человеческого плазминогена и бактериальной стрептокиназы) и стафилокиназа (продуцируемая золотистым стафилококком) (рис. 12). Эти вещества используются в качестве фармакологических тромболитических средств, применяются для лечения острого тромбоза (например, при остром коронарном синдроме, ТЭЛА).

        Расщепление плазмином пептидных связей в фибрине и фибриногене приводит к образованию различных дериватов с меньшей молекулярной массой, а именно продуктов деградации фибрина (фибриногена) – ПДФ. Самый крупный дериват называется фрагментом X (икс), который ещё сохраняет аргинин-глициновые связи для дальнейшего действия, осуществляемого тромбином. Фрагмент Y (антитромбин) меньше, чем X, он задерживает полимеризацию фибрина, действуя как конкурентный ингибитор тромбина (рис. 11). Два других, меньших по размеру фрагмента, D и E, ингибируют агрегацию тромбоцитов.

        Плазмин в кровотоке (в жидкой фазе) быстро инактивируется естественно образующимися ингибиторами, но плазмини в фибриновом сгустке (гелевая фаза) защищён от действия ингибиторов и лизирует фибрин локально. Таким образом, в физиологических условиях фибринолиз ограничен зоной фибринообрвазония (гелевая фаза), то есть гемостатической пробкой. Однако при патологических состояниях фибринолиз может стать генерализованным, охватывая обе фазы плазминообразования (жидкую и гелевую), что приводит к литическому состоянию (фибринолитическое состояние, активный фибринолиз). Оно характеризуется образованием избыточного количества ПДФ в крови, а также проявляющимся клинически кровотечением.

      • Клиническое значение нарушений в коагуляционном звене гемостаза и фибринолитической системе

        Врождённое (см. табл. 1) или приобретённое уменьшение содержания или активности плазменных факторов свёртывания может сопровождаться повышенной кровоточивостью (геморрагические диатезы с гематомным типом кровоточивости, например гемофилия А, гемофилия B, афибриногенемия, гипокоагуляционная стадия синдрома диссеминированного внутрисосудистого свёртывания – ДВС, печёночно-клеточная недостаточность и др.; дефицит фактора Виллебранда приводит к развитию геморрагического синдрома со смешанным типом кровоточивости, т.к. ФВ участвует и в сосудисто-тромбоцитарном и в коагуляционном гемостазе). Избыточная активация коагуляционного гемостаза (например, в гиперкоагуляционную фазу ДВС), резистентность факторов свёртывания к соответствующим ингибиторам (например, Лейденская мутация фактора V) или дефицит ингибиторов (например, дефицит АТ III, дефицит PС) приводят к развитию тромбозов (наследственные и приобретённые тромбофилии).

        Избыточная активация фибринолитической системы (например, при наследственном дефиците α 2 -антиплазмина) сопровождается повышенной кровоточивостью, её недостаточность (например, при повышенном уровне ИАП-1) – тромбозами.

        В качестве антикоагулянтов в клинической практике применяются следующие лекарственные препараты: гепарины (нефракционированный гепарин – НФГ и низкомолекулярные гепарины – НМГ), фондапаринукс (взаимодействует с АТ III и селективно ингибирует ФXa), варфарин . Управлением по контролю за качеством пищевых продуктов и лекарственных средств (FDA) США разрешены к применению (по специальным показаниям (например, для лечения гепарининдуцированной тромбоцитопенической пурпуры) внутривенные препараты – прямые ингибиторы тромбина: липерудин, аргатробан, бивалирудин. Клинические испытания проходят пероральные ингибиторы фактора IIa (дабигатран) и фактора Xa (ривароксабан, апиксабан).

        Коллагеновая кровоостанавливающая губка способствует местному гемостазу за счёт активации тромбоцитов и факторов свёртывания контактной фазы (внутренний путь активации гемостаза).

        В клинике используются следующие основные методы исследования системы коагуляционного гемостаза и мониторинга терапии антикоагулянтами: тромбоэластография, определение времени свёртывания крови , времени рекальцификации плазмы, активированного частичного (парциального) тромбопластинового времени (АЧТВ или АПТВ) , протромбинового времени (ПВ), протромбинового индекса, международного нормализованного отношения (МНО) , тромбинового времени , анти-фактор Xa активности плазмы, . транексамовая кислота (циклокапрон). Апротинин (гордокс, контрикал, трасилол) – природный ингибитор протеаз, получаемый из бычьих лёгких. Он подавляет действие многих веществ, участвующих в воспалении, фибринолизе, образовании тромбина. К числу этих веществ относятся калликреин и плазмин.

    • Список литературы
      1. Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology 5th edition, completely revised and expanded. Thieme. Stuttgart - New York. 2003.
      2. Физиология человека: в 3-х томах. Т. 2. Пер. с англ./Под ред. Р. Шмидта и Г. Тевса. – 3-е изд. – М.: Мир, 2005. – 314 с., ил.
      3. Шиффман Ф. Дж. Патофизиология крови. Пер. с англ. – М. – Спб.: «Издательство БИНОМ» - «Невский диалект», 2000. – 448 с., ил.
      4. Физиология человека: Учебник/ Под. ред. В. М. Смирнова. – М.: Медицина, 2002. – 608 с.: ил.
      5. Физиология человека: Учебник/ В двух томах. Т. I./ В. М. Покровский, Г. Ф. Коротько, В. И. Кобрин и др.; Под. ред. В. М. Покровского, Г. Ф. Коротько. – М.: Медицина, 1997. – 448 с.: ил.
      6. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов – М.: ЗАО «Издательство БИНОМ», 1999 г. – 622 с.: ил.
      7. Руководство по кардиологии: Учебное пособие в 3 т. /Под ред. Г. И. Сторожакова, А. А. Горбанченкова. – М.: Гэотар-Медиа, 2008. – Т. 3.
      8. T Wajima1, GK Isbister, SB Duffull. A Comprehensive Model for the Humoral Coagulation Network in Humans. Clinical pharmacology & Therapeutic s, VOLUME 86, NUMBER 3, SEPTEMBER 2009., p. 290-298.
      9. Gregory Romney and Michael Glick. An Updated Concept of Coagulation With Clinical Implications. J Am Dent Assoc 2009;140;567-574.
      10. D. Green. Coagulation cascade. Hemodialysis International 2006; 10:S2–S4.
      11. Клиническая фармакология по Гудману и Гилману. Под общей ред. А. Г. Гилмана. Пер. с англ. под общей ред. к. м. н. Н. Н. Алипова. М., "Практика", 2006.
      12. Bauer KA. New Anticoagulants. Hematology Am Soc Hematol Educ Program. 2006:450-6
      13. Karthikeyan G, Eikelboom JW, Hirsh J. New oral anticoagulants: not quite there yet. Pol Arch Med Wewn. 2009 Jan-Feb;119(1-2):53-8.
      14. Руководство по гематологии в 3 т. Т. 3. Под ред. А. И. Воробьёва. 3-е изд. Перераб. и дополн. М.: Ньюдиамед: 2005. 416 с. С ил.
      15. Andrew K. Vine. Recent advances in hemostasis and thrombosis. RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2009, VOLUME 29, NUMBER 1.
      16. Папаян Л. П. Современная модель гемостаза и механизм действия препарата Ново-Севен // Проблемы гематологии и переливания крови. Москва, 2004, №1. – с. 11-17.