Глаз млекопитающих - орган чувств, состоящий из большого числа рецепторных клеток (палочек и колбочек сетчатки), сенсорных нейронов, образующих зрительный нерв, и сложной системы вспомогательных приспособлений. Такое устройство позволяет глазу воспринимать свет с различной длиной волны, отражаемый объектами, находящимися в поле зрения на разных расстояниях, и преобразовывать его в электрические импульсы, которые направляются в головной мозг и порождают удивительно точное восприятие.

Свет распространяется в виде волн электромагнитного излучения, и волны, воспринимаемые человеческим глазом, составляют узкую, так называемую видимую часть спектра (длины волн 380-760 нм; см. Приложение 1.7). Свет - один из видов энергии, он испускается и поглощается дискретными порциями - квантами , или фотонами . Каждый квант в видимой части спектра несет энергию, достаточную для того, чтобы вызвать фотохимическую реакцию в чувствительных клетках глаза. Работа глаза основана на тех же перечисленных ниже принципах, что и фотокамера, а именно он 1) контролирует количество света, проходящее внутрь; 2) фокусирует изображения предметов внешнего мира с помощью системы линз; 3) регистрирует изображение на чувствительной поверхности; 4) перерабатывает невидимое изображение во внутренний образ видимой картины мира.

Строение и функция человеческого глаза

Глаза расположены во впадинах черепа, называемых глазницами ; глаз укреплен здесь при помощи четырех прямых и двух косых мышц, управляющих его движениями. Глазное яблоко человека имеет диаметр около 24 мм и весит 6-8 г. Большую часть глаза составляют вспомогательные структуры, назначение которых в том, чтобы проецировать поле зрения на сетчатку - слой фоторецепторных клеток, выстилающий глазное яблоко изнутри.

Стенка глаза состоит из трех концентрических слоев: 1) склеры (белковой оболочки) и роговицы; 2) сосудистой оболочки, ресничного тела, хрусталика и радужки; 3) сетчатки. Форма глаза поддерживается за счет гидростатического давления (25 мм рт. ст.) водянистой влаги и стекловидного тела. Схема строения человеческого глаза приведена на рис. 16.33. Ниже дается краткое перечисление различных его частей и выполняемых ими функций.

Склера - самая наружная оболочка глаза. Это очень плотная капсула, содержащая коллагеновые волокна; защищает глаз от повреждения и помогает глазному яблоку сохранять свою форму.

Роговица - прозрачная передняя сторона склеры. Благодаря искривленной поверхности действует как главная светопреломляющая структура.

Конъюнктива - тонкий прозрачный слой клеток, защищающий роговицу и переходящий в эпителий век. Конъюнктива не заходит на участок роговицы, прикрывающий радужку.

Веко - защищает роговицу от механического и химического повреждения, а сетчатку - от слишком яркого света.

Сосудистая оболочка - средняя оболочка; пронизана сосудами, снабжающими кровью сетчатку, и покрыта пигментными клетками, препятствующими отражению света от внутренних поверхностей глаза.

Ресничное (цилиарное) тело - место соединения склеры и роговицы. Состоит из эпителиальных клеток, кровеносных сосудов и цилиарной мышцы. Цилиарная мышца-кольцо, состоящее из гладких мышечных волокон, кольцевых и радиальных, которые изменяют форму хрусталика при аккомодации.

Цилиарная (циннова) связка - прикрепляет хрусталик к цилиарному телу.

Хрусталик - прозрачное эластичное двояковыпуклое образование. Обеспечивает тонкую фокусировку лучей света на сетчатке и разделяет камеры, заполненные водянистой влагой и стекловидным телом.

Водянистая влага - прозрачная жидкость, представляющая раствор солей. Секретируется цилиарным телом и переходит из глаза в кровь через шлеммов канал.

Радужка - кольцевая мышечная диафрагма, содержит пигмент, определяющий цвет глаз. Разделяет пространство, заполненное водянистой влагой, на переднюю и заднюю камеры и регулирует количество света, проникающего в глаз.

Зрачок - отверстие в радужке, через которое свет проходит внутрь глаза.

Стекловидное тело - прозрачное полужидкое вещество, поддерживающее форму глаза.

Сетчатка - внутренняя оболочка, содержащая фоторецепторные клетки (палочки и колбочки), а также тела и аксоны нейронов, образующих зрительный нерв.

Центральная ямка - наиболее чувствительный участок сетчатки, содержащий только колбочки. В этом участке наиболее точно фокусируются лучи света.

Зрительный нерв - пучок нервных волокон, проводящих импульсы от сетчатки в мозг.

Слепое пятно - место на сетчатке, где из глаза выходит зрительный нерв; оно не содержит ни палочек, ни колбочек и потому не обладает светочувствительностью.

16.8. Перечислите по порядку структуры, через которые проходит свет по пути к сетчатке.

Аккомодация

Аккомодация - это рефлекторный механизм, с помощью которого лучи света, исходящие от объекта, фокусируются на сетчатке. Он включает два процесса, каждый из которых будет рассмотрен отдельно.

Рефлекторное изменение диаметра зрачка. При ярком свете кольцевая мускулатура радужки сокращается, а радиальная расслабляется; в результате происходит сужение зрачка и количество света, по-падающего на сетчатку, уменьшается, что предотвращает ее повреждение (рис. 16.34). При слабом свете, наоборот, радиальная мускулатура сокращается, а кольцевая расслабляется. Дополнительное преимущество, доставляемое сужением зрачка, состоит в том, что увеличивается глубина резкости, и поэтому различия в расстоянии от объекта до глаза меньше сказываются на изображении.

Преломление (рефракция) света. От объекта, удаленного на расстояние больше 6 м, в глаз поступают практически параллельные лучи света, тогда как лучи, идущие от более близких предметов, заметно расходятся. В обоих случаях для того, чтобы свет сфокусировался на сетчатке, он должен быть преломлен (т. е. его путь изогнут), и для близких предметов преломление должно быть более сильным. Нормальный глаз способен точно фокусировать свет от объектов, находящихся на расстоянии от 25 см до бесконечности. Преломление света происходит при переходе его из одной среды в другую, имеющую иной коэффициент преломления, в частности на границе воздух - роговица и у поверхностей хрусталика. Форма роговицы не может изменяться, поэтому рефракция здесь зависит только от угла падения света на роговицу, который в свою очередь зависит от удаленности предмета. В роговице происходит наиболее сильное преломление света, а функция хрусталика состоит в окончательной "наводке на фокус". Форма хрусталика регулируется цилиарной мышцей: от степени ее сокращения зависит натяжение связки, поддерживающей хрусталик. Последняя воздействует на эластичный хрусталик и изменяет его форму (кривизну поверхности), а тем самым и степень преломления света. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет. Полная картина этих взаимоотношений представлена в табл. 16.8. На рис. 16.35 показаны изменения, происходящие в глазу при аккомодации для восприятия отдаленных и близких предметов.

На сетчатке изображение получается перевернутым, но это не мешает правильному восприятию, так как все дело не в пространственном положении изображения на сетчатке, а в интерпретации его мозгом.

Строение сетчатки

Сетчатка развивается как вырост переднего мозга, называемый глазным пузырьком. В процессе эмбрионального развития глаза фоторецепторный участок пузырька впячивается внутрь до соприкосновения с сосудистым слоем. При этом рецепторные клетки оказываются лежащими под слоем тел и аксонов нервных клеток, связывающих их с мозгом (рис. 16.36).

Сетчатка состоит из трех слоев, каждый из которых содержит клетки определенного типа. Самый наружный (наиболее удаленный от центра глазного яблока) светочувствительный слой содержит фоторецепторы - палочки и колбочки , частично погруженные в пигментный слой сосудистой оболочки. Затем идет промежуточный слой , содержащий биполярные нейроны, которые связывают фоторецепторы с клетками третьего слоя. В этом же промежуточном слое находятся горизонтальные и амакриновые клетки, обеспечивающие латеральное торможение. Третий слой - внутренний поверхностный слой - содержит ганглиозные клетки, дендриты которых соединены синапсами с биполярными клетками, а аксоны образуют зрительный нерв.

Строение и функция палочек и колбочек

Палочки и колбочки очень сходны по своему строению: в тех и других светочувствительные пигменты находятся на наружной поверхности внутриклеточных мембран наружного сегмента; и те и другие состоят из четырех участков, строение и функции которых кратко описаны ниже.

Наружный сегмент. Это тот светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Весь наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной и отделившимися от нее. В палочках число этих дисков составляет 600-1000, они представляют собой уплощенные мембранные мешочки и уложены наподобие стопки монет. В колбочках мембранных дисков меньше, и они представляют собой складки плазматической мембраны.

Перетяжка. Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент. Это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке расположено ядро.

Синаптическая область. В этом участке клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек или колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.

Различия между палочками и колбочками

Палочек в сетчатке содержится больше, чем колбочек (120⋅10 6 и 6-7⋅10 6 соответственно). Распределение палочек и колбочек тоже неодинаково. Тонкие, вытянутые палочки (размеры 50 х 3 мкм) равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненные конические колбочки (60 х 1,5 мкм). Так как в центральной ямке колбочки очень плотно упакованы (15⋅10 4 на 1 мм 2), этот участок отличается высокой остротой зрения (разд. 16.4.2). В то же время палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не способны различать цвета и используются преимущественно в ночном зрении. Колбочки содержат три зрительных пигмента, и это позволяет им воспринимать цвет; они используются главным образом при дневном свете. Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно и сигналы от них подвергаются конвергенции, но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения.

16.9. Объясните, почему конвергенция должна повышать чувствительность глаза к слабому свету.

16.10. Объясните, почему ночью предметы видны лучше, если не смотреть прямо на них.

Механизм фоторецепции

Палочки содержат светочувствительный пигмент родопсин , находящийся на наружной поверхности мембранных дисков. Родопсин, или зрительный пурпур , представляет собой сложную молекулу, образующуюся в результате обратимого связывания липопротеина скотопсина с небольшой молекулой поглощающего свет каротиноида - ретиналя . Последний представляет собой альдегидную форму витамина А и может существовать (в зависимости от освещения) в виде двух изомеров (рис. 16.37).

Установлено, что при воздействии света на родопсин один фотон способен вызывать изомеризацию, показанную на рис. 16.37. Ретиналь играет роль простетической группы, и полагают, что он занимает определенный участок на поверхности молекулы скотопсина и блокирует реактивные группы, участвующие в генерации электрической активности в палочках. Точный механизм фоторецепции пока неизвестен, но предполагается, что он включает два процесса. Первый из них - это превращение 11-цис -ретиналя в полностью - транс - ретиналь под действием света, а второй - расщепление родопсина через ряд промежуточных продуктов на ретиналь и скотопсин (процесс, называемый выцветанием):

После прекращения воздействия света родопсин тотчас же ресинтезируется. Вначале полностью - транс - ретиналь при участии фермента ретиналь - изомеразы превращается в 11 - цис - ретиналь, а затем последний соединяется со скотопсином. Этот процесс лежит в основе темновой адаптации. В полной темноте требуется около 30 мин, чтобы все палочки адаптировались и глаза приобрели максимальную чувствительность. Однако во время этого процесса проницаемость мембраны наружного сегмента для Na + уменьшается, в то время как внутренний сегмент продолжает откачивать ионы Na + наружу, и в результате внутри палочки возрастает отрицательный потенциал, т.е. происходит гиперполяризация (рис. 16.38). Это прямо противоположно тому, что обычно наблюдается в других рецепторных клетках, где раздражение вызывает деполяризацию, а не гиперполяризацию. Гиперполяризация замедляет высвобождение из палочек возбуждающего медиатора, который в темноте выделяется в наибольшем количестве. Биполярные клетки, связанные через синапсы с палочками, тоже отвечают гиперполяризацией, но в ганглиозных клетках, аксоны которых образуют зрительный нерв, в ответ на сигнал от биполярной клетки возникает распространяющийся потенциал действия.


Рис. 16.38. Схема строения палочки, иллюстрирующая предполагаемые изменения проницаемости наружного сегмента для Na + под действием света. Отрицательные заряды на правой стороне палочки соответствуют потенциалу покоя, а на левой стороне - гиперполяризации

Цветовое зрение

В видимой части спектра человеческий глаз поглощает свет всех длин волны, воспринимая их в виде шести цветов, каждый из которых соответствует определенному участку спектра (табл. 16.9). Существуют три типа колбочек - "красные", "зеленые" и "синие", которые содержат разные пигменты и, по данным электрофизиологических исследований, поглощают свет с различной длиной волны.

Цветовое зрение объясняют с позиций трехкомпонентной теории, согласно которой ощущения различных цветов и оттенков определяются степенью раздражения каждого типа колбочек светом, отражаемым от объекта. Так, например, одинаковая стимуляция всех колбочек вызывает ощущение белого цвета. Первичное различение цветов осуществляется в сетчатке, но окончательный цвет, который будет воспринят, определяется интегративными функциями мозга. Эффект смешения цветов лежит в основе цветного телевидения, цветной фотографии и живописи.

Цветовая слепота. Полное отсутствие или недостаток колбочек какого-либо типа может приводить к различным формам цветовой слепоты или аномалиям цветоощущения. Например, люди, у которых нет "красных" или "зеленых" колбочек, не различают красный и зеленый цвета, а те, у кого имеется недостаточное количество колбочек одного из этих двух типов, плохо различают некоторые оттенки красного и зеленого цвета. Для выявления дефектов цветового зрения применяют тестовые таблицы типа таблиц Исахари, на которых нанесены пятнышки разных цветов. На некоторых таблицах из этих пятнышек составлены цифры. Человек с нормальным цветовым зрением легко различает эти цифры, а лица с нарушенным цветоощущением видят другое число или вообще не видят никакой цифры.

Цветовая слепота передается по наследству как рецессивный признак, сцепленный с Х-хромосомой. Среди мужчин около 2% не различают красный цвет и 6%-зеленый, тогда как среди женщин аномалиями цветового зрения страдают только 0,4%.

16.11. Испытуемый помещает перед одним глазом зеленый фильтр, а перед другим - красный и смотрит на предмет. Используя данные, приведенные в табл. 16.9, опишите его цветовые ощущения.

Бинокулярное зрение и стереоскопическое зрение

Бинокулярное зрение имеет место в том случае, когда зрительные поля обоих глаз перекрываются таким образом, что их центральные ямки фиксируются на одном и том же объекте. Бинокулярное зрение имеет ряд преимуществ по сравнению с использованием одного глаза, в том числе расширяет поле зрения и дает возможность компенсировать повреждения одного глаза за счет другого. Кроме того, бинокулярное зрение снимает эффект слепого пятна и, наконец, лежит в основе стереоскопического зрения. Стереоскопическое зрение обусловлено тем, что на сетчатках двух глаз одновременно возникают слегка различающиеся изображения, которые мозг воспринимает как один образ. Чем больше глаза направлены вперед, тем больше стереоскопическое поле зрения. У человека, например, общее поле зрения охватывает 180°, а стереоскопическое - 140°. У лошади глаза расположены по бокам головы, поэтому их фронтальное стереоскопическое поле зрения ограниченно и используется лишь для рассматривания удаленных предметов. Чтобы лучше рассмотреть близкий предмет, лошадь поворачивает голову и пользуется монокулярным зрением. Для хорошего стереоскопического зрения необходимы глаза, направленные вперед, с центральными ямками, лежащими посередине их полей, что обеспечивает большую остроту зрения. В этом случае стереоскопическое зрение позволяет получать более точное представление о размерах и форме предмета, а также о расстоянии, на котором он находится. В основном стереоскопическое зрение характерно для хищных животных, которым оно абсолютно необходимо, если они ловят добычу, внезапно набрасываясь на нее или пикируя с высоты, как это делают представители семейства кошачьих, ястребы или орлы. У животных, которым приходится спасаться от хищников, глаза, напротив, расположены по бокам головы, благодаря чему они имеют более широкий обзор, но ограниченное стереоскопическое зрение. Например, у кролика общее поле зрения охватывает 360°, а фронтальное стереоскопическое поле - всего 20°. Анализ изображений, получаемых на сетчатке при стереоскопическом зрении, осуществляется в двух симметричных участках, составляющих зрительную кору.

Зрительные пути и зрительная кора

Нервные импульсы, возникающие в сетчатке, поступают по миллиону или около того волокон зрительного нерва в зрительную кору, расположенную в задней части затылочных долей. В этой зоне спроецированы все мельчайшие участки сетчатки, включающие, возможно, всего лишь по нескольку палочек и колбочек, и именно здесь зрительные сигналы интерпретируются и мы "видим". Однако то, что мы видим, приобретает смысл только после обмена сигналами с другими участками коры и прежде всего с височными долями, где хранится предшествующая зрительная информация и где она используется для анализа и идентификации текущих зрительных сигналов (разд. 16.2.4). В мозгу человека аксоны от левых половин сетчатки обоих глаз направляются к левой половине зрительной коры, а аксоны от правых половин сетчатки обоих глаз - к правой стороне зрительной коры. Аксоны, идущие от носовых половин обеих сетчаток, пересекаются; место их пересечения называется зрительным перекрестом или хиазмой (схема зрительных путей представлена на рис. 16.39). Около 20% волокон зрительного нерва не доходит до зрительной коры, а вступает в средний мозг и участвует в рефлекторной регуляции диаметра зрачка и движений глаз.

Различают ли животные цвета? Это интересный вопрос, но дать на него точный и исчерпывающий ответ нелегко. Нам, обладающим цветным зрением, трудно представить себе вселенную без красок, и у нас, естественно, возникает предположение, будто все живые существа также воспринимают окружающий мир в виде многокрасочных картин. Однако такое представление не соответствует действительности.

Цвет - понятие довольно произвольное и трудноопределимое. Цветоощущение нелегко исследовать и объяснить; именно поэтому ученые издавна испытывали трудности в объективном и точном толковании этой способности. В сущности, ни один предмет не обладает цветом; он просто поглощает белый дневной свет и отражает при этом лишь одну долю этого света, ту или иную часть солнечного спектра. Так, например, зеленые листья дерева поглощают все части спектра, кроме зеленой, которая ими отражается; именно это и делает их зелеными для наших глаз.

Попробуйте объяснить слепому, не прибегая к сравнениям, что такое красный цвет. Это окажется совершенно невозможным. Даже среди зрячих людей широко распространены различные степени цветовой слепоты. Один и тот же цвет люди зачастую оценивают по-разному; кроме того, наша оценка цветов продолжает совершенствоваться и меняться. Ведь Гомер постоянно называет море винно-красным, а у некоторых древнегреческих авторов встречается упоминание о зеленом цвете человеческого лица.

В конечном счете, все здесь упирается в особенности воспринимающего оптического аппарата - достаточно небольшого дефекта или отклонения от нормы, например отсутствия у человека одного из трех светочувствительных «проводов», ведущих от сетчатой оболочки глаза к мозгу. Каждый из упомянутых проводящих путей обеспечивает восприятие одного из основных цветов: красного, зеленого или синего. У большинства дальтоников нет зеленого «провода»; у других - отсутствует красный «провод», и они слепы к красному цвету. В физическом смысле изменения в организме человека при этом крайне незначительны; они сводятся лишь к особенностям нервной системы. Имеются все основания полагать, что у ряда животных, имеющих глаза, сходные с человеческими, совершенно нет тех небольших деталей, которые обеспечивают цветоощущение.

МИР БЕЛОГО И ЧЕРНОГО

Из сказанного достаточно ясно, как трудно (учитывая также, что и сами мы в какой-то незначительной степени можем страдать дальтонизмом) применять к другим существам наши ограниченные и не вполне точные знания в области цветоощущения. Данной теме посвящено немало исследований, но многие из них недостаточно доказательны. Чрезвычайно трудно установить, различает или нет то или иное животное цвета. Ведь сами животные не в состоянии ответить на этот вопрос. Более того, почти всегда трудно решить, на что реагирует животное - на цвет или на степень яркости и белизны предмета. Поэтому для того, чтобы эксперимент представлял ценность, необходимо применять цвета, равноценные по яркости и степени белизны. В противном случае подопытное животное, особенно если оно относится к высшим животным, может отличить красный цвет от зеленого по относительной яркости, как это имеет место у людей, страдающих дальтонизмом.

Но, несмотря на очевидные ограничения, мы все же кое-что знаем в этой области. Так, можно с уверенностью сказать, что почти все млекопитающие, за исключением всех видов , совершенно не различают цветов. Они живут в мире черного и белого со значительным диапазоном промежуточных серых оттенков. Они зачастую отчетливо улавливают разницу в интенсивности черного цвета, в световой насыщенности белых и серых тонов. Последнее обстоятельство нередко приводит людей к выводу, будто определенные животные (например, собаки) различают некоторые цвета.

Как часто восхищенный хозяин готов поклясться, что его собака опознает по цвету платье, даже если оно надето на незнакомом человеке, что она различает миску или подушку исключительно по их окраске! Трудно представить себе, что можно жить в мире, лишенном красок! Между тем большинство млекопитающих по своим повадкам относится к типу ночных или сумеречных животных; они выходят из убежищ только тогда, когда мир начинает погружаться во мрак и терять свои краски, освещенный лишь слабым и неверным светом луны.

Впрочем, и для людей все это не так уж непривычно. Ведь мы легко смотрим одноцветные кинокартины; много газет и журналов до сего времени иллюстрируется однотонными фотоснимками, и мы воспринимаем их как отображение подлинной жизни. Простой рисунок, выполненный черным карандашом, часто кажется нам чрезвычайно естественным и живым. Несмотря на все пристрастие человечества к краскам, мы ощущаем их отсутствие значительно слабее, чем нам порой может показаться.

ТОРЕАДОРУ НЕ НУЖЕН КРАСНЫЙ ПЛАЩ

Наряду с иными был проведен и следующий несложный эксперимент. Небольшие квадраты серой бумаги (различных оттенков, но одинаковой яркости) располагались в шахматном порядке; в центре размещался синий квадрат. На каждом квадрате устанавливалась кормушка, причем в кормушке, находившейся на синем квадрате, был налит сироп, остальные были пусты. Через некоторое время пчел удалось приучить летать только к синему квадрату, даже если его положение относительно других изменялось.

Когда же синяя бумага была заменена красной (одинаковой яркости), пчелы оказались дезориентированными - они не умели отличить красный квадрат от серых. Пчелы слепы не только к красному цвету; они живут как бы в мире синих, фиолетовых и желтых оттенков; вместе с тем они (как и ряд других насекомых) способны проникнуть дальше человека в ультрафиолетовую часть спектра. Конечно, насекомые, являющиеся переносчиками пыльцы, летят к цветам, руководствуясь не только цветом, но и запахом; об этом свидетельствует, в частности, то, как легко пчелы находят цветы ивы, плюща, липы.

МОСКИТЫ ПРЕДПОЧИТАЮТ ЧЕРНОЕ

Как правило, цветоощущением обладают лишь насекомые с хорошо развитыми, фасеточными глазами. Наилучшим цветоощущением среди насекомых обладают стрекозы; второе место, по-видимому, занимают осовидные мухи, а также некоторые разновидности и мотыльков. Обыкновенные мухи различают синий цвет; они его, вероятно, не любят, так как сторонятся окон, вымытых синькой, синих стен и занавесок. Москиты, различающие желтый, белый и черный цвет, предпочитают, по-видимому, последний. В одном из изобилующих этими насекомыми районов Орегона (США) был проведен опыт, в котором участвовали семь человек, одетых в платье различных цветов. Было установлено, что наибольшее количество москитов привлекла черная одежда (1499 за полминуты); на втором месте, со значительным отставанием, оказалась белая (520 насекомых за тот же промежуток времени).

Зрение (продолжение)

Не весь свет, проникающий через зрачок и достигающий светочувствительной сетчатки, используется для зрения. Часть его поглощается внешним пигментным слоем. Для некоторых животных (преимущественно ночных) это означало бы слишком большие потери и так незначительного количества доступного света. Поэтому у таких видов позади сетчатки формируется отражательное дно глаза, или зеркальце (tapetum lucidum). Его функция - отражение неиспользованного света обратно на сетчатку для дополнительной стимуляции ее рецепторов. У млекопитающих встречается два основных типа зеркальца. Зеркальце волокнистого типа состоит из блестящих волокон соединительной ткани. Такое зеркальце характерно для копытных. Зеркальце клеточного типа слагается из нескольких слоев уплощенных эндотелиальных клеток, содержащих кристаллы гуанина. Такой тип обычен у хищных. Зеркальце обычно расположено в сосудистой оболочке за сетчаткой, но, например, у некоторых летучих мышей и у виргинского опоссума (Didelphis virginiana ) оно погружено в саму сетчатку. Именно зеркальце благодаря отражению хотя бы минимального количества света при почти полной темноте обуславливает кажущееся свечение глаз. Подобное «свечение» глаз характерно для многих млекопитающих - например, хищных, некоторых копытных и приматов, но у человека встречается лишь как атавизм. Цвет, которым «светятся» глаза, зависит от количества крови в капиллярах сосудистой оболочки и содержания родопсина (пурпурного светочувствительного пигмента) в палочковидных элементах сетчатки, через которую проходит отраженный свет.

Эффект «свечения» глаз у кошек (Felis silvestris ). Установлено, что за цветовое зрение у позвоночных отвечают 4 семейства генов, кодирующих опсины колбочек: SWS1, SWS2, Rh2, LWS. Все 4 семейства генов были выявлены у птиц, рыб и рептилий, у амфибий - лишь 3. У млекопитающих ситуация значительно сложнее. У однопроходных выявлены гены семейств SWS2 и LWS, а также нефункциональный ген из SWS1; у сумчатых имеются гены из SWS1 и LWS, а также, возможно, из Rh2. Плацентарные имеют гены опсинов только из семейств SWS1 и LWS. Вместе с тем, млекопитающие хорошо распознают особенности формы и рисунка предметов или их частей, а также разнообразные движения. В наибольшей степени эти способности свойственны обезьянам.

У многих рептилий и птиц присутствует 4 типа колбочек, обеспечивающих четырехкомпонентное цветовое зрение. Кроме того, в колбочках этих животных содержатся окрашенные капельки жира, действующие как светофильтры и в сочетании с фотопигментами определяющие спектральную чувствительность рецепторов. В колбочках млекопитающих подобные светофильтры отсутствуют, вследствие чего их способность к цветовому зрению основывается только на избирательной чувствительности фотопигментов. Однако, обладая только 2 типами колбочек, большинство млекопитающих способно исключительно к двухкомпонентному зрению. Таковы, в частности, многие копытные, хищные и грызуны. При этом дифференциация цветов у них очень ограничена. Например, рыжая полевка (Myodes glareolus ) различает лишь красный и желтый цвета, домашний бык (Bos primigenius ) - синий и красновато-зеленый, кошка (Felis silvestris ) - голубой, зеленый и желтый.

Слабое восприятие цветов связано с тем, что каждая длина волны стимулирует оба типа колбочек, но в разной степени и в соответствии с их относительной чувствительностью в этой части спектра. Если мозг может распознавать такую разницу, животное различает длину волны света по его интенсивности. Однако эти определенные отношение возбудимости характерны более чем для одной части спектра, поэтому некоторые длины волн воспринимаются одинаково. Длина волны, одинаково возбуждающая оба типа колбочек (в области пересечения кривых поглощения), воспринимается как белый цвет и называется «нейтральной точкой» спектра. В то же время, млекопитающие различают большое количество оттенков серого цвета: например, кошка - до 25. Это вполне закономерно, ведь их предки были ночными животными с преобладанием палочек в сетчатке.

Типичные рецепторные механизмы при разных типах цветового зрения (по Мак-Фарленду, 1988). Цветовое смешение меньше выражено в зрительных системах узконосых и части широконосых обезьян, обладающих 3 фотопигментами. Однако некоторое смешение происходит и здесь: можно, например, вызвать впечатление любого цвета посредством разных сочетаний трех цветовых составляющих, специально подобранных по интенсивности и насыщенности. Без этого было бы невозможно зрительное восприятие цветной фотографии и цветного телевидения. Трехкомпонентному цветовому зрению сухоносых приматов сопутствует слабое сумеречное зрение в связи с небольшим числом палочек. Помимо обезьян, трехкомпонентное зрение среди млекопитающих присуще лишь некоторым сумчатым.

Что же касается мокроносых приматов, то цветовое зрение у них вообще отсутствует, поскольку это выражено ночные животные, воспринимающие свет лишь с помощью палочек. Не обнаружено цветовое зрение у виргинского опоссума (Didelphis virginiana ), лесного хорька (Mustela putorius ) и ряда других видов. Некоторые сумчатые, рукокрылые и грызуны способны видеть в ультрафиолетовом диапазоне. Со слабой цветовой чувствительностью в некоторой мере связана не слишком разнообразная (по сравнению с птицами) расцветка млекопитающих. Исключение в этом отношении составляют сухоносые приматы, в окраске которых как раз и встречаются яркие цвета - красный, желтый, зеленый, голубой.

Ганглионарные клетки внутренней поверхности сетчатки дают длинные нервные волокна, идущие в передний мозг. В месте их выхода не могут располагаться палочки или колбочки, чем и объясняется наличие здесь слепого пятна. У человека мозг кое-как заполняет пробел в изображении, используя информацию, получаемую от соседних участков. Хотя соединение сетчатки с мозгом и называют зрительным нервом, он отличается от любого нормального нерва в двух отношениях. Здесь, примерно как в обонятельном нерве, волокна, идущие к мозгу, принадлежат клеткам органа чувств, а не мозга. Кроме того, поскольку сетчатку эмбриологически правильнее рассматривать как часть самого мозга, зрительный «нерв» в действительности не является настоящим периферическим нервом, а скорее волокнистым трактом, соединяющим два отдела мозга.

Достигнув дна переднего мозга, волокна зрительного нерва входят в Х-образный зрительный перекрест (chiasma opticum). В мозге большинство аксонов ганглионарных клеток приходят в латеральные коленчатые тела таламуса, откуда идут к первичной зрительной коре. Из первичной зрительной коры сигнал передается во вторичные участки зрительной коры, некоторые из которых располагаются в височной и теменной долях. Аксоны зрительного нерва также проецируются на подкорковые ганглии мозга, минуя латеральные коленчатые тела: на предкрышечное поле, регулирующее диаметр зрачка, верхние бугры четверохолмия, участвующие в глазодвигательной функции, и супрахиазматическое ядро гипоталамуса, отвечающее за циркадные ритмы. При этом области мозга, получающие сигналы от сетчатки, если не всегда, то в большинстве случаев так упорядочены топографически, что создают мысленную «картину», воспроизводящую такое же расположение объектов, какое воспринимает сетчатка. Таким образом, зрительная информация по точкам проецируется на мозговые структуры, где и происходит обработка характеристик изображения (цвета, формы, движения, глубины и др.), причем для целостного восприятия эти свойства должны быть интегрированы. В то время как зрительные центры в коре больших полушарий млекопитающих устроены сложнее, чем у других позвоночных, значение зрительной коры их среднего мозга уменьшено.

Проводящий путь зрительного анализатора млекопитающего с сильно развитым стереоскопическим зрением (по Сапину и Биличу, 2007):
1 - схема строения сетчатки и формирования зрительного нерва (стрелка показывает направление света в сетчатке); 2 - короткие ресничные нервы; 3 - ресничный узел; 4 - глазодвигательный нерв; 5 - ядро глазодвигательного нерва; 6 - покрышечно-спинномозговой путь; 7 - зрительная лучистость; 8 - латеральное коленчатое тело; 9 - зрительный тракт; 10 - зрительный перекрест; 11 - зрительный нерв; 12 - глазное яблоко. Волокна из одноименных половин обоих глаз направляются в одноименную же половину мозга. Как правило, снаружи глаз защищен 2 подвижными непрозрачными веками (palpebrae), из которых лучше развито верхнее. Веки часто снабжены ресницами, которые препятствуют засорению глаза. Внутренняя сторона век выстлана слизистой оболочкой - конъюнктивой. Зачастую здесь располагаются тарзальные, или мейбомиевы, железы (glandulae tarsales), выделяющие глазную смазку. Кольцо из волокон лицевой мускулатуры действует в качестве сфинктера, закрывающего веки. От прозрачной мигательной перепонки (membrana nictitans) у большинства млекопитающих сохранились лишь рудиментарные остатки во внутреннем углу глаза, но у некоторых из них (у кошек (Felidae), белого медведя (Ursus maritimus ), ластоногих (Pinnipedia), верблюдов (Camelidae), трубкозуба (Orycteropus afer )) она вполне развита. Кроме того, у внутреннего угла глаза иногда помещается гардерова железа (glandula nictitans), выделяющая жирный смазывающий секрет (ее нет у приматов). В наружном углу глаза млекопитающих находится слезная железа (glandula lacrimalis), жидкие выделения которой промывают и предохраняют от высыхания глаз и внутреннюю поверхность век. Кроме того, в слезах содержится бактерицидный белок лизоцим. Носослезной проток (ductus nasolacrimalis), начинающийся во внутреннем углу глаза, отводит избыток жидкости в носовую полость. Таким образом, дополнительное значение слезной жидкости состоит в том, что она смачивает слизистую носа. Окологлазные железы наряду с веками и мышцами составляют вспомогательный аппарат глаза.
Строение века млекопитающего, фронтальный разрез (по Сапину и Биличу, 2007):
1 - конъюнктива; 2 - хрящ века; 3 - вековая часть круговой мышцы глаза; 4 - ресничная железа; 5 - край века; 6 - ресница; 7 - кожа. Острота зрения зависит от различных причин, но одним из главных определяющих ее факторов является величина глаз. Крупный глаз различает в осматриваемой картине больше подробностей не только потому, что эта картина в нем меньше изменена (линейное уменьшение картины в глазе кролика (Oryctolagus cuniculus ) равно 112, человека (Homo sapiens ) - 60, льва (Panthera leo ) - 40), а и потому, что он отражается в большем числе зрительных клеток. И все-таки, глаза большинства млекопитающих относительно невелики. В частности, у человека они составляют около 1% от общей массы головы, тогда как у скворца этот показатель достигает 15 %. При этом млекопитающие малого размера имеют относительно большие глаза в отличие от крупных зверей, особенно если они родственны друг другу (например, кошка (Felis silvestris ) и тигр (Panthera tigris )). Этого и следует ожидать, так как если глаз определенного размера обеспечивает удовлетворительное зрение для данного животного, то его укрупнение не даст преимущества в борьбе за выживание, а работа глаза никак не зависит от величины животного, которому он принадлежит.

На черепе долгопята (Tarsius sp.) внимание к себе прежде всего привлекают огромные глазницы. Хорошо развиты глаза зверей, ведущих преимущественно дневной образ жизни и населяющих открытые ландшафты (например, многих копытных); большая часть воспринимаемой ими информации поступает именно через зрительный канал. Значение зрения уменьшается у обитателей лесов, кустарниковых зарослей или травянистого покрова. Особенно крупных размеров достигают глаза млекопитающих с сумеречной или ночной активностью, для которых важен визуальный контроль - некоторых приматов (кошачьего лмура (Lemur catta ), тонких лори (Loris ), долгопятов (Tarsiidae), ночных обезьян (Aotus )), кошек (барханного кота (Felis margarita ), манула (Otocolobus manul )) и т. п. Глаза ночных животных улавливают больше света благодаря широким зрачкам и большим хрусталикам; данных о повышенной чувствительности таких глаз к длинным волнам нет. У некоторых животных, например у галаго (Galago ), череп сужен с боков, что приводит к цилиндрическому удлинению глаза.

Сравнение глаз ночных млекопитающих - опоссума (Didelphis virginiana ), мыши (Mus musculus ) и рыси (Lynx lynx ), - а также собаки (Canis lupus ), обладающей дневным и ночным зрением. У других ночных форм (например, у летучих мышей) глаза небольшие; в этом случае недостаток зрения компенсируется высокоразвитым слухом, обонянием и осязанием. У многих норников глаза в большей или меньшей степени редуцированы и регистрируют лишь изменения освещенности (у гоферов (Geomyidae), цокоров (Myospalax ), слепушонок (Ellobius ), прометеевой полевки (Prometheomys schaposchnikovi )). Иногда рудиментарные глаза полностью перестают функционировать и затягиваются кожей (у сумчатых кротов (Notoryctes ), златокротов (Chrysochloridae), слепого крота (Talpa соеса ), слепышей (Spalacinae)).

Глаза водных млекопитающих используются только для ближней ориентации, по своей выпуклости и большому показателю преломления они напоминают глаза рыб. Роговица у таких глаз уплощена, а хрусталик круглый, что свидетельствует о близорукости; слезные железы имеются, но выделяют жирный, а не водянистый секрет. Некоторые китообразные специально адаптированы к господствующим на глубине условиям освещения. Например, у глубоко ныряющего северного плавуна (Berardius bairdi ) зрительные пигменты поглощают короткие волны сильнее, чем у неглубоко ныряющего серого кита (Eschrichtius gibbosus ).

Поле зрения во многом зависит от положения глаз на голове. При бинокулярном, или стереоскопическом, зрении получаемые от обоих глаз картинки в большей или меньшей степени перекрываются, и два изображения, передаваемые в мозг, приблизительно одинаковы. Такое зрение обеспечивает гораздо более точную оценку расстояния, чем монокулярное. У большинства млекопитающих глаза расположены по бокам головы - это обеспечивает почти круговой обзор, при котором бинокулярное зрение ограничено лишь узким сектором прямо перед мордой. Реже глаза развернуты вперед; общий обзор при этом сокращается, но поле бинокулярного зрения расширяется. Первый тип преобладает у копытных и грызунов, постоянно ожидающих нападения врагов. Второй тип характерен для приматов, которым необходимо точно определять расстояния при прыжках с ветки на ветку, и для части хищников, особенно кошачьих, которые, нападая из засады, должны точно фиксировать расстояние до жертвы.

Поля зрения (по Мак-Фарленду, 1988):
А - у белки (Sciurus sp.); Б - у кошки (Felis sp.); В - у ночной обезьяны (Aotus sp.). Важной анатомической особенностью, связанной с бинокулярностью зрения, является неполная декуссация в зрительном перекресте. У многих млекопитающих волокна от тех областей двух сетчаток, которые воспринимают одинаковые фрагменты внешней картины, направляются к одной и той же половине мозга. Таким образом, определенные группы волокон не переходят на другую сторону (т. е. полной декуссации не происходит), а меняют свое направление в зрительном перекресте под прямым углом и сопровождают соответствующие волокна из противоположного глаза. Например, у человека, где перекрывание полей зрения почти полное, практически все волокна от левых половин сетчаток направляются в левую половину мозга, а от правых половин сетчаток - в правую половину мозга. В результате зрительная область каждой из сторон мозга воспринимает половину всего поля зрения в виде «двойной экспозиции» (поскольку хрусталик проецирует на сетчатку перевернутое изображение, левая половина единого поля зрения обрабатывается у человека в правой половине мозга и наоборот). Благодаря дальнейшим сложным взаимодействиям между полушариями две половины картины совмещаются и осознаются как единое стереоскопическое изображение.

При рассматривании предмета, когда важна острота зрения, изображение приводится в фокус на центральной ямке - части сетчатки, которая содержит только колбочки и обеспечивает наибольшую остроту зрения. Человек (Homo sapiens ) обладает одной расположенной в центре глаза ямкой с круглыми очертаниями. У гепарда (Acinonyx jubatus ) и ряда других обитателей открытых местностей центральная ямка вытянута по горизонтали. У древесных млекопитающих, например у белки (Sciurus vulgaris ), центральная ямка имеет форму диска; то же самое относится к сумеречным и ночным формам, например к ежу (Erinaceus europaeus ), кошке (Felis silvestris ) и мыши (Mus musculus ). Для таких животных вертикальное направление, очевидно, не так важно, как и горизонтальное. У лошади (Equus ferus ) нет центральной ямки, но есть «центральная линия». Это центральная область на сетчатке, относительно которой перпендикулярно глазному дну выстраиваются в линию рецепторы. Направление светового потока на центральную линию обеспечивает фокусировку изображения у лошади.

В связи с обитанием в мутной воде глаза гангского дельфина (Platanista gangetica ) утратили хрусталик, их зрительный нерв деградировал, а слизистая оболочка начала выполнять осязательную функцию. Животное практически слепо, хотя по-прежнему способно улавливать интенсивность и направление света. Ориентируется и охотится гангский дельфин с помощью развитой эхолокации. Небольшие различия в углах зрения левого и правого глаз позволяют воспринимать глубину и трехмерность пространства - ощущения, которые иначе достигнуты быть не могут. Для одновременного фокусирования глаз должна существовать некоторая конвергенция обеих линий взора. Чем ближе рассматриваемый предмет, тем большая необходима конвергенция. Направление обеих линий взора устанавливают наружные мышцы глаза, пока оба изображения на сетчатках не совпадут и головной мозг не будет регистрировать единое изображение. Если в это же время мозг отмечает степень конвергенции обоих глаз, возникает информация о расстоянии до предмета. Однако точное совпадение обоих изображений близких предметов на сетчатках невозможно. Расстояние между глазами будет определять разницу в положении двух изображений. Это расхождение (диспаратность) изображений на сетчатках тоже дает важную информацию о расстоянии до предметов. Оценка расстояния и глубины - сложный процесс, для которого требуется много данных помимо тех, какие доставляют конвергенция и диспаратность.

Высокий уровень организации зрительной системы открывает перед млекопитающими возможности не только для совершенной визуальной ориентации в пространстве, но и для усложнения и обогащения зрительных связей между особями. Возникли и широко используются «языки» формы, поз, жестов и мимики, служащие упорядочению отношений в популяциях и образованию группировок с согласованным поведением сочленов.

Мы видим мир вокруг и, нам кажется, что он именно такой. Сложно даже представить, что кто - то видит его по-другому, в черно - белых тонах, или без синего и красного. Сложно поверить, что для кого - то наш привычный мир совсем другой.

Но это именно так.

Давайте посмотрим на окружающий мир глазами животных, разберемся, как животные видят, в каких цветах они воспринимают мир.

Итак, для начала разберем, что такое зрение и какие функциональные способности оно включает.

Что такое зрение?

Зрение - процесс обработки изображения объектов окружающего мира.

  • осуществляется зрительной системой
  • позволяет получать представление о величине, форме и цвете предметов, их взаимном расположении и расстоянии между ними

Зрительный процесс включает:

  • проникновение светового потока через преломляющие среды глаза
  • фокусировка света на сетчатке
  • трансформация световой энергии в нервный импульс
  • передача нервного импульса от сетчатки в головной мозг
  • обработка информации с формированием увиденного образа

Зрительные функции:

  • светоощущение
  • восприятие движущих объектов
  • поля зрения
  • острота зрения
  • цветовое восприятие

Светоощущение - способность глаза воспринимать свет и определять различную степень его яркости.

Процесс приспособления глаза к различным условиям освещения называется адаптацией. Различают два вида адаптации:

  • к темноте - при понижении уровня освещенности
  • и к свету - при повышении уровня освещенности

Светоощущение является основой всех форм зрительного ощущения и восприятия, особенно в темноте. На светоощущение глаза также влияют такие факторы как:

  • распределение палочек и колбочек (у животных центральный участок сетчатки в25 ° состоит, преимущественно, из палочек, что улучшает ночное восприятие)
  • концентрация светочувствительных зрительных веществ в палочках (у собак чувствительность к свету палочек 500-510нм, у человека 400нм)
  • наличие тапетума (tapetum lucidum) - особый слой сосудистой оболочки глаза (тапетум направляет назад прошедшие на сетчатку фотоны, заставляя их ещё раз воздействовать на рецепторные клетки, повышая светочувствительность глаза, что в условиях малого освещения такая оказывается весьма ценно) у кошек глаз отражает в 130 раз больше света, чем у человека (Paul E. Miller, DVM, and Christopher J. Murphy DVM, PhD)
  • форма зрачка - форма, размер и положение зрачка у различных животных (зрачок бывает круглый, щелевидный, прямоугольный, вертикальный, горизонтальный)
  • форма зрачка может рассказать относится ли животное к хищникам или жертвам (у хищников зрачок сужается в вертикальную полоску, у жертв в горизонтальную - эту закономерность ученые обнаружили, сравнив формы зрачков у 214 видов животных)

Итак, какие бывают формы зрачков:


Как животные воспринимают движущие объекты?

Восприятие движения имеет жизненно важное значение, т.к. движущиеся объекты являются сигналами либо опасности, либо потенциальной пищи и требуют быстрого соответствующего действия, в то время как неподвижные объекты могут быть игнорированы.

Например, собаки могут распознать движущиеся объекты (благодаря большому количеству палочек) на расстоянии 810 до 900 м, а неподвижные объекты только на расстоянии 585 м.

Как животные реагируют на мелькающий свет (например, в телевизоре)?

Реакция на мелькающий свет дает представление о функции палочек и колбочек.

Человеческий глаз способен улавливать колебания 55 герц, а собачий глаз улавливает колебания на частоте 75 герц. Поэтому, в отличие от нас, собаки, скорее всего, видят лишь мерцание и большая часть из них на изображение в телевизоре не обращают внимание. Изображения предметов в обоих глазах проецируются на сетчатке и передаются в кору головного мозга, где происходит их слияние в одно изображение.

Какие у животных поля зрения?

Поле зрения - пространство, воспринимаемое глазом при неподвижном взгляде. Можно выделить два основных типа зрения:

  • бинокулярное зрение - восприятие окружающих предметов двумя глазами
  • монокулярное зрение - восприятие окружающих предметов одним глазом

Бинокулярное зрение имеется далеко не у всех видов животных и зависит от строения и взаиморасположения глаз на голове. Бинокулярное зрение позволяет совершать тонкие координированные движения передними конечностями, прыжки, легко передвигаться.


Хищникам бинокулярное восприятие объектов охоты помогает правильно оценить расстояние до намеченной жертвы и выбрать оптимальную траекторию нападения. У собак, волков, койотов, лисиц, шакалов угол бинокулярного поля равен 60-75°, у медведей 80-85°. У кошек 140°(зрительные оси обоих глаз почти параллельны).

Монокулярное зрение с большим полем позволяет потенциальным жертвам (сурки, суслики, зайцы, копытные и т. п.) вовремя заметить опасность. достигает у грызунов 360°, у копытных 300-350°, у птиц достигает более 300°. Хамелеоны и морские коньки умеют смотреть сразу в двух направлениях, т.к. их глаза двигаются независимо друг от друга.


Острота зрения

  • способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные
  • минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки

От чего зависит острота зрения?

  • от размеров колбочек, рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика и стекловидного тела (составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста
  • диаметр колбочки определяет величину максимальной остроты зрения (чем меньше диаметр колбочек, тем больше острота зрения)

Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1. У человека для определения остроты зрения используют таблицу Головина-Сивцева, содержащую буквы, цифры или знаки различной величины. У животных остроту зрения определяют с помощью (Ofri ., 2012):

  • поведенческого теста
  • электроретинографии

Острота зрения собак оценивается в 20-40% от остроты зрения людей, т.е. собака узнает объект с 6 метров, тогда как человек - с 27 м.

Почему собака не обладает остротой зрения человека?

У собак, как и у всех других млекопитающих, за исключением обезьяны и человека, отсутствует центральная ямка сетчатки (область максимальной остроты зрения). Большинство собак слегка дальнозорки (гиперметропия: +0,5 Д), т.е. они могут различать мелкие предметы или их детали на расстоянии не ближе 50-33 см; все предметы, расположенные ближе, кажутся расплывчатыми, в кругах рассеивания. Кошки близоруки, то есть они не видят дальние объекты также хорошо. Способность хорошо видеть вблизи больше подходит для охоты на добычу. Лошадь имеет невысокую остроту зрения и относительно близорука. Хорьки близоруки, что является, без сомнения, реакцией на их адаптацию к норному образу жизни и поиску добычи по запаху. Близорукое зрение хорьков является таким же острым как и наше и, может быть, даже немного острее.

Таким образом,самое острое зрение у орла, затем в порядке убывания: сокол, человек, лошадь, голубь, собака,кошка,кролик,корова, слон,мышь.

Цветовое зрение

Цветовое зрение - это восприятие цветового многообразия окружающего мира. Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цветовой спектр). Осуществляется цветовое зрение колбочками. В сетчатке глаза человека есть три вида колбочек:

  • первый воспринимает длинноволновые цвета – красный и оранжевый
  • второй тип лучше воспринимает средневолновые цвета – жёлтый и зелёный
  • третий тип колбочек отвечает за коротковолновые цвета – синий и фиолетовый

Трихромазия - восприятие всех трех цветов
Дихромазия - восприятие только двух цветов
Монохромазия - восприятие только одного цвета

Как воспринимают цвет животные?

Вид животного Короткая длина волны, нм Средняя длина волны,нм Источник
Собака 454 561 Loop et al. (1987) Guenther &Zrenner (1993)
Кошка 429-435 555 Neitz et al. (1989); Jacobs et al. (1993)
Лошадь 428 539 Carroll et al. (2001); Timney&Macuda (2001)
Свинья 439 556 Neitz&Jacobs (1989) Корова 451 555 Jacobsetal. (1998)

Цветовое зрение собак:


Цветовое зрение кошек:


Цветовое зрение лошади:


Автор (ы): Сенин И.И. и Тихомирова Н.К.
Организация(и): Лаборатория зрительной рецепции отдела сигнальных систем клетки НИИ физико-химической биологии им. А.Н.Белозерского МГУ им. М.В.Ломоносова.
Журнал: №1 - 2011
На протяжении многих лет на кафедре биологии и патологии мелких домашних, лабораторных и экзотических животных Московской государственной академии ветеринарной медицины и биотехнологии имени К.И. Скрябина проводятся исследования одного из тяжелейших патологий зрения у собак -- генерализованной прогрессирующей атрофии сетчатки. В ходе исследований ученым удалось разработать современные подходы для ранней диагностики, профилактики и лечения этого заболевания.

В этом номере журнала VetPharmaмы предлагаем ознакомиться с несколькими, наиболее интересными работами, отражающими результаты этих исследований.

Среди всех органов чувств глаз занимает особое место. Если принять за 100% информацию, которую воспринимают все органы чувств, вместе взятые, то на долю зрения придется до 80% информации, получаемой организмом извне . Человек и животные с помощью зрения распознают объекты, воспринимают их размеры, форму, расположение в пространстве, движение.

По своей форме глаз (глазное яблоко) млекопитающих имеет неправильную шаровидную форму (рис.1.) В глазном яблоке выделяют две основные составляющие: ядро и капсулу. Ядро глазного яблока включает хрусталик, водянистую влагу и стекловидное тело, которые прозрачны и в большей, или меньшей степени, - способны преломлять свет. Хрусталик имеет вид линзы. Вещество хрусталика, прозрачное и бесцветное, не содержит сосудов и нервов, снаружи оно облечено в бесструктурную прозрачную капсулу. Волокна хрусталика построены из характерного для них белка кристаллина . Водянистая влага представляет собой текучую прозрачную жидкость, близкую по своему составу плазме крови . Она заполняет пространство, примыкающее к передней полусфере хрусталика, тогда как задняя его поверхность соприкасается со стекловидным телом. Стекловидное тело, на которое приходится основная масса глазного яблока, облечено в прозрачную бесструктурную оболочку и большей частью своей поверхности прилегает к сетчатке. Оно представляет собой прозрачное и аморфное вещество, состоящее из белка витреина и гиалуроновой кислоты .

Капсула глазного яблока (стенка глаза) включает в себя три слоя по медицинской номенклатуре оболочки. Это (в направлении от периферии к центру глаза) наружный опорный, средний увеальный и внутренний сетчатый слои глазной капсулы.

Опорный слой охватывает глаз снаружи и состоит из двух отделов, склеры и роговицы. Склера - наружная оболочка глаза, представляющая собой плотную капсулу, содержащую коллагеновые волокна. Она обеспечивает механическую прочность глаза и поддерживает его форму. Спереди склера переходит в роговицу, которая покрывает центральный участок глаза. Снаружи роговицу защищает конъюнктива -- тонкий прозрачный слой клеток, переходящий в эпителий век. Внешняя поверхность роговицы покрыта тонким слоем слезной жидкости.

Сосудистая оболочка -- это средняя оболочка глаза, пронизанная сосудами, снабжающими кровью сетчатку. Она покрыта пигментными клетками, лежит между склерой и сетчаткой и является сильно васкуляризованной пигментированной тканью. Радужка -- кольцевая мышечная диафрагма, содержащая пигмент, определяющий цвет глаз. Она разделяет пространство, заполненное водянистой влагой, на переднюю и заднюю камеры и регулирует количество света, проникающего в глаз через зрачок.

Сетчатка представляет собой по расположению самую внутреннюю, а для световосприятия -- самую важную оболочку глаза. На уровне сетчатки происходят анализ зрительной информации и выделение наиболее существенных элементов зрительных образов, например, направления и скорости движения объекта, его величины. Поэтому не удивительно, что любые заболевания, приводящие к патологиям сетчатки, приводят к ослаблению зрения и даже к полной и необратимой слепоте .

Благодарности. Работа поддержана грантом Российского фонда фундаментальных исследований№09-04-01778-а и грантом Президента Российской Федерации для молодых российских ученых №МД-4423.2010.4.

Литература

1. Строение глаза. http://colinz.ru/osnov.php?idstat=50&idcatstat=15

2. В.М. Мажуль, Е.М. Зайцева, Д.Г. Щербин, А.Ю. Чекина, О.М. Голуб. Фосфоресцентный анализ ткани хрусталика в норме и при катаракте. http://www.eyenews.ru/pages.php?id=932&glaukoma=

3. П.П. Филиппов, В.Ю. Аршавский, А.М. Дижур. Биохимия зрительной рецепции. М.: ВИНИТИ, 1987

4. А.Г.Гунин Гистология в таблицах и схемах. http://www.histol.chuvashia.com/tables/sens-2.htm

5. http://www.glazclinic.ru/lechenie-zabolevani-setchatki