Глаза - это особый орган, которым наделены все живые существа на планете. Мы знаем, в каких красках видим мир, а вот каким его видят животные? Какие цвета видят кошки, а какие нет? Черно-белое ли зрение у собак? Знания о зрении животных помогут нам шире посмотреть на окружающий нас мир и понять особенности поведения своих домашних питомцев.

Особенности зрения

И все-таки, как животные видят? По отдельным показателям у животных зрение более совершенное, чем у человека, но зато оно уступает в возможности различать цветовую гамму. Большинство зверей видят только в определенной для их вида палитре. Так, например, долгое время считалось, что собаки видят только в черно-белых тонах. А змеи вообще слепы. Но последние исследования доказали, что животные видят разную длину волны, в отличие от человека.

Мы, благодаря зрению, получаем более 90% информации о мире, который нас окружает. Глаза для нас - преобладающий орган чувств. Интересно, что зрение животных по своей остроте существенно превышает человеческую. Не секрет, что пернатые хищники видят в 10 раз лучше. Орел способен обнаружить добычу в полете с расстояния в несколько сот метров, а сапсан выслеживает голубя с высоты в километр.

Отличие также состоит в том, что большинство животных отлично видят в темноте. Фоторецепторные клетки сетчатки их глаза фокусируют свет, и это позволяет животным, ведущим ночной образ жизни, улавливать потоки света в несколько фотонов. А то, что глаза многих зверей светятся в темноте, объясняется тем, что под сетчаткой расположен уникальный светоотражающий слой называемый тапетум. А теперь давайте рассмотрим отдельные виды животных.

Лошади

Грациозность лошади и ее выразительные глаза вряд ли кого-то могут оставить равнодушным. Но часто тем, кто учится ездить верхом, говорят, что подходить к лошади сзади опасно. Но почему? Как животные видят, что у них происходит за спиной? Да никак - у лошади за спиной находится и поэтому она легко может испугаться и взбрыкнуть.

Глаза лошади расположены так, что она способна видеть в двух ракурсах. Ее зрение как бы разделено надвое - каждый глаз видит свою картинку, из-за того что глаза расположены по бокам головы. Но если лошадь смотрит вдоль носа, то она видит одно изображение. Также это животное имеет периферийное зрение и превосходно видит в сумерках.

Добавим немножко анатомии. В сетчатке любого живого существа находятся рецепторы двух видов: колбочки и палочки. От количества колбочек зависит цветовое зрение, а палочки отвечают за периферическое. У лошадей количество палочек преобладает над тем, какое находится у человека, а вот рецепторы-колбочки сопоставимы. Это говорит о том, что у лошадей также есть цветное зрение.

Кошки

Многие дома держат животных, и самые распространенные, конечно, кошки. Зрение животных, а особенно семейства кошачьих, значительно отличается от человеческого. Зрачок у кошки не круглый, как у большинства животных, а вытянутый. Он остро реагирует на большое количество яркого света сужением до небольшой щели. Этот показатель говорит, что в сетчатке глаза животных находится большое количество палочек-рецепторов, за счет которых они прекрасно видят в темноте.

А как же цветное зрение? Какие цвета видят кошки? До недавнего времени считалось, что кошки видят в черно-белом цвете. Но исследования показали, что хорошо различает серые, зеленые и синие цвета. К тому же видит множество оттенков серого - до 25 тонов.

Собаки

Зрение собак отличается от того, к чему мы привыкли. Если снова вернуться к анатомии, то в глазах человека находятся три вида колбочек-рецепторов:

  • Первый воспринимает длинноволновое излучение, которое отличает оранжевый и красный цвета.
  • Второй - средневолновое. Именно на этих волнах мы видим желтый и зеленый.
  • Третий, соответственно, воспринимает короткие волны, на которых различимы голубой и фиолетовый.

Глаза животных отличаются наличием двух видов колбочек, поэтому собаки не видят оранжевые и красные цвета.

Это отличие не единственное - собаки дальнозорки и видят лучше всего движущиеся предметы. Расстояние, с которого они видят неподвижный предмет, насчитывает до 600 метров, а вот движущийся объект собаки замечают уже с 900 метров. Именно по этой причине лучше всего не убегать от четырехлапых охранников.

Зрение практически не является основным органом у собаки, по большей части они идут за запахом и слухом.

А теперь давайте подведем итог - какие цвета видят собаки? В этом они похожи на людей-дальтоников, видят голубой и фиолетовый, желтый и зеленый, а вот смесь цветов может казаться им просто белой. Но лучше всего собаки, как и кошки, различают серые цвета, причем до 40 оттенков.

Коровы

Многие верят, и нам часто преподносят, что домашние парнокопытные остро реагируют на красный цвет. В действительности же глаза этих животных воспринимают цветовую палитру в очень размытых нечетких тонах. Поэтому быки и коровы больше всего реагируют на движение, чем на то, как окрашена ваша одежда или каким цветом машут перед их мордой. Интересно, а кому понравится, если перед его носом начнут махать какой-либо тряпкой, втыкая, впридачу, в загривок копья?

И все-таки, как животные видят? Коровы, судя по строению их глаз, способны различать все цвета: белый и черный, желтый и зеленый, красный и оранжевый. Но только слабо и размыто. Интересно, что у коров зрение похоже на увеличительное стекло, и именно по этой причине они часто пугаются, увидев неожиданно подходящих к ним людей.

Ночные животные

Многие животные, ведущие ночной образ жизни, имеют Например, долгопят. Это маленькая обезьянка, которая выходит на охоту ночью. Размер ее не превышает белку, но это единственный в мире примат, питающийся насекомыми и ящерицами.

Глаза этого животного огромны и не поворачиваются в глазницах. Но при этом у долгопята очень гибкая шея позволяющая ему вращать головой на все 180 градусов. Он также имеет необыкновенное периферийное зрение, позволяющее видеть даже ультрафиолетовое излучение. Но цвета различает долгопят очень слабо, как и все

Хочется сказать и о наиболее распространенных обитателях городов в ночное время - летучих мышах. Долгое время предполагалось, что они не пользуются зрением, а летают только благодаря эхолокации. Но последние исследования показали, что у них отличное ночное зрение, и более того - летучие мыши способны выбирать, лететь ли им на звук или включать ночное видение.

Рептилии

Рассказывая, как животные видят, нельзя умолчать о том, как видят змеи. Сказка про Маугли, где удав своим взглядом завораживает обезьян, приводит в трепет. Но правда ли это? Давайте разберемся.

У змей очень слабое зрение, на это влияет защитная оболочка, покрывающая глаз рептилии. От этого названные органы кажутся мутными и принимают тот ужасающий вид, о котором слагают легенды. Но зрение для змей не главное, в основном, они нападают на движущиеся объекты. Поэтому в сказке и говорится, что обезьяны сидели как в оцепенении - они инстинктивно знали, как спасаться.

Не все змеи имеют своеобразные тепловые датчики, но все же инфракрасное излучение и цвета они различают. Змея обладает бинокулярным зрением, а значит, она видит две картинки. А мозг, быстро обрабатывая полученную информацию, дает ей представление о размерах, расстоянии и очертаниях потенциальной жертвы.

Птицы

Птицы поражают разнообразием видов. Интересно, что и зрение у этой категории живых существ тоже сильно различается. Все зависит от того, какой образ жизни ведет птица.

Так, всем известно, что хищники обладают чрезвычайно острым зрением. Некоторые виды орлов могут замечать свою добычу с высоты более километра и камнем падать вниз, чтобы ее поймать. А известно ли вам, что отдельные виды хищных птиц способны видеть ультрафиолет, который позволяет им находить в темноте ближайшие норки

А живущий у вас дома волнистый попугайчик имеет великолепное зрение и способен видеть все в цвете. Исследования доказали, что данные особи различают друг друга при помощи яркого оперения.

Конечно, эта тема очень широка, но, надеемся, что и приведенные факты пригодятся вам для понимания того, как видят животные.

Различают ли животные цвета? Это интересный вопрос, но дать на него точный и исчерпывающий ответ нелегко. Нам, обладающим цветным зрением, трудно представить себе вселенную без красок, и у нас, естественно, возникает предположение, будто все живые существа также воспринимают окружающий мир в виде многокрасочных картин. Однако такое представление не соответствует действительности.

Цвет - понятие довольно произвольное и трудноопределимое. Цветоощущение нелегко исследовать и объяснить; именно поэтому ученые издавна испытывали трудности в объективном и точном толковании этой способности. В сущности, ни один предмет не обладает цветом; он просто поглощает белый дневной свет и отражает при этом лишь одну долю этого света, ту или иную часть солнечного спектра. Так, например, зеленые листья дерева поглощают все части спектра, кроме зеленой, которая ими отражается; именно это и делает их зелеными для наших глаз.

Попробуйте объяснить слепому, не прибегая к сравнениям, что такое красный цвет. Это окажется совершенно невозможным. Даже среди зрячих людей широко распространены различные степени цветовой слепоты. Один и тот же цвет люди зачастую оценивают по-разному; кроме того, наша оценка цветов продолжает совершенствоваться и меняться. Ведь Гомер постоянно называет море винно-красным, а у некоторых древнегреческих авторов встречается упоминание о зеленом цвете человеческого лица.

В конечном счете, все здесь упирается в особенности воспринимающего оптического аппарата - достаточно небольшого дефекта или отклонения от нормы, например отсутствия у человека одного из трех светочувствительных «проводов», ведущих от сетчатой оболочки глаза к мозгу. Каждый из упомянутых проводящих путей обеспечивает восприятие одного из основных цветов: красного, зеленого или синего. У большинства дальтоников нет зеленого «провода»; у других - отсутствует красный «провод», и они слепы к красному цвету. В физическом смысле изменения в организме человека при этом крайне незначительны; они сводятся лишь к особенностям нервной системы. Имеются все основания полагать, что у ряда животных, имеющих глаза, сходные с человеческими, совершенно нет тех небольших деталей, которые обеспечивают цветоощущение.

МИР БЕЛОГО И ЧЕРНОГО

Из сказанного достаточно ясно, как трудно (учитывая также, что и сами мы в какой-то незначительной степени можем страдать дальтонизмом) применять к другим существам наши ограниченные и не вполне точные знания в области цветоощущения. Данной теме посвящено немало исследований, но многие из них недостаточно доказательны. Чрезвычайно трудно установить, различает или нет то или иное животное цвета. Ведь сами животные не в состоянии ответить на этот вопрос. Более того, почти всегда трудно решить, на что реагирует животное - на цвет или на степень яркости и белизны предмета. Поэтому для того, чтобы эксперимент представлял ценность, необходимо применять цвета, равноценные по яркости и степени белизны. В противном случае подопытное животное, особенно если оно относится к высшим животным, может отличить красный цвет от зеленого по относительной яркости, как это имеет место у людей, страдающих дальтонизмом.

Но, несмотря на очевидные ограничения, мы все же кое-что знаем в этой области. Так, можно с уверенностью сказать, что почти все млекопитающие, за исключением всех видов , совершенно не различают цветов. Они живут в мире черного и белого со значительным диапазоном промежуточных серых оттенков. Они зачастую отчетливо улавливают разницу в интенсивности черного цвета, в световой насыщенности белых и серых тонов. Последнее обстоятельство нередко приводит людей к выводу, будто определенные животные (например, собаки) различают некоторые цвета.

Как часто восхищенный хозяин готов поклясться, что его собака опознает по цвету платье, даже если оно надето на незнакомом человеке, что она различает миску или подушку исключительно по их окраске! Трудно представить себе, что можно жить в мире, лишенном красок! Между тем большинство млекопитающих по своим повадкам относится к типу ночных или сумеречных животных; они выходят из убежищ только тогда, когда мир начинает погружаться во мрак и терять свои краски, освещенный лишь слабым и неверным светом луны.

Впрочем, и для людей все это не так уж непривычно. Ведь мы легко смотрим одноцветные кинокартины; много газет и журналов до сего времени иллюстрируется однотонными фотоснимками, и мы воспринимаем их как отображение подлинной жизни. Простой рисунок, выполненный черным карандашом, часто кажется нам чрезвычайно естественным и живым. Несмотря на все пристрастие человечества к краскам, мы ощущаем их отсутствие значительно слабее, чем нам порой может показаться.

ТОРЕАДОРУ НЕ НУЖЕН КРАСНЫЙ ПЛАЩ

Наряду с иными был проведен и следующий несложный эксперимент. Небольшие квадраты серой бумаги (различных оттенков, но одинаковой яркости) располагались в шахматном порядке; в центре размещался синий квадрат. На каждом квадрате устанавливалась кормушка, причем в кормушке, находившейся на синем квадрате, был налит сироп, остальные были пусты. Через некоторое время пчел удалось приучить летать только к синему квадрату, даже если его положение относительно других изменялось.

Когда же синяя бумага была заменена красной (одинаковой яркости), пчелы оказались дезориентированными - они не умели отличить красный квадрат от серых. Пчелы слепы не только к красному цвету; они живут как бы в мире синих, фиолетовых и желтых оттенков; вместе с тем они (как и ряд других насекомых) способны проникнуть дальше человека в ультрафиолетовую часть спектра. Конечно, насекомые, являющиеся переносчиками пыльцы, летят к цветам, руководствуясь не только цветом, но и запахом; об этом свидетельствует, в частности, то, как легко пчелы находят цветы ивы, плюща, липы.

МОСКИТЫ ПРЕДПОЧИТАЮТ ЧЕРНОЕ

Как правило, цветоощущением обладают лишь насекомые с хорошо развитыми, фасеточными глазами. Наилучшим цветоощущением среди насекомых обладают стрекозы; второе место, по-видимому, занимают осовидные мухи, а также некоторые разновидности и мотыльков. Обыкновенные мухи различают синий цвет; они его, вероятно, не любят, так как сторонятся окон, вымытых синькой, синих стен и занавесок. Москиты, различающие желтый, белый и черный цвет, предпочитают, по-видимому, последний. В одном из изобилующих этими насекомыми районов Орегона (США) был проведен опыт, в котором участвовали семь человек, одетых в платье различных цветов. Было установлено, что наибольшее количество москитов привлекла черная одежда (1499 за полминуты); на втором месте, со значительным отставанием, оказалась белая (520 насекомых за тот же промежуток времени).

Автор (ы): Сенин И.И. и Тихомирова Н.К.
Организация(и): Лаборатория зрительной рецепции отдела сигнальных систем клетки НИИ физико-химической биологии им. А.Н.Белозерского МГУ им. М.В.Ломоносова.
Журнал: №1 - 2011
На протяжении многих лет на кафедре биологии и патологии мелких домашних, лабораторных и экзотических животных Московской государственной академии ветеринарной медицины и биотехнологии имени К.И. Скрябина проводятся исследования одного из тяжелейших патологий зрения у собак -- генерализованной прогрессирующей атрофии сетчатки. В ходе исследований ученым удалось разработать современные подходы для ранней диагностики, профилактики и лечения этого заболевания.

В этом номере журнала VetPharmaмы предлагаем ознакомиться с несколькими, наиболее интересными работами, отражающими результаты этих исследований.

Среди всех органов чувств глаз занимает особое место. Если принять за 100% информацию, которую воспринимают все органы чувств, вместе взятые, то на долю зрения придется до 80% информации, получаемой организмом извне . Человек и животные с помощью зрения распознают объекты, воспринимают их размеры, форму, расположение в пространстве, движение.

По своей форме глаз (глазное яблоко) млекопитающих имеет неправильную шаровидную форму (рис.1.) В глазном яблоке выделяют две основные составляющие: ядро и капсулу. Ядро глазного яблока включает хрусталик, водянистую влагу и стекловидное тело, которые прозрачны и в большей, или меньшей степени, - способны преломлять свет. Хрусталик имеет вид линзы. Вещество хрусталика, прозрачное и бесцветное, не содержит сосудов и нервов, снаружи оно облечено в бесструктурную прозрачную капсулу. Волокна хрусталика построены из характерного для них белка кристаллина . Водянистая влага представляет собой текучую прозрачную жидкость, близкую по своему составу плазме крови . Она заполняет пространство, примыкающее к передней полусфере хрусталика, тогда как задняя его поверхность соприкасается со стекловидным телом. Стекловидное тело, на которое приходится основная масса глазного яблока, облечено в прозрачную бесструктурную оболочку и большей частью своей поверхности прилегает к сетчатке. Оно представляет собой прозрачное и аморфное вещество, состоящее из белка витреина и гиалуроновой кислоты .

Капсула глазного яблока (стенка глаза) включает в себя три слоя по медицинской номенклатуре оболочки. Это (в направлении от периферии к центру глаза) наружный опорный, средний увеальный и внутренний сетчатый слои глазной капсулы.

Опорный слой охватывает глаз снаружи и состоит из двух отделов, склеры и роговицы. Склера - наружная оболочка глаза, представляющая собой плотную капсулу, содержащую коллагеновые волокна. Она обеспечивает механическую прочность глаза и поддерживает его форму. Спереди склера переходит в роговицу, которая покрывает центральный участок глаза. Снаружи роговицу защищает конъюнктива -- тонкий прозрачный слой клеток, переходящий в эпителий век. Внешняя поверхность роговицы покрыта тонким слоем слезной жидкости.

Сосудистая оболочка -- это средняя оболочка глаза, пронизанная сосудами, снабжающими кровью сетчатку. Она покрыта пигментными клетками, лежит между склерой и сетчаткой и является сильно васкуляризованной пигментированной тканью. Радужка -- кольцевая мышечная диафрагма, содержащая пигмент, определяющий цвет глаз. Она разделяет пространство, заполненное водянистой влагой, на переднюю и заднюю камеры и регулирует количество света, проникающего в глаз через зрачок.

Сетчатка представляет собой по расположению самую внутреннюю, а для световосприятия -- самую важную оболочку глаза. На уровне сетчатки происходят анализ зрительной информации и выделение наиболее существенных элементов зрительных образов, например, направления и скорости движения объекта, его величины. Поэтому не удивительно, что любые заболевания, приводящие к патологиям сетчатки, приводят к ослаблению зрения и даже к полной и необратимой слепоте .

Благодарности. Работа поддержана грантом Российского фонда фундаментальных исследований№09-04-01778-а и грантом Президента Российской Федерации для молодых российских ученых №МД-4423.2010.4.

Литература

1. Строение глаза. http://colinz.ru/osnov.php?idstat=50&idcatstat=15

2. В.М. Мажуль, Е.М. Зайцева, Д.Г. Щербин, А.Ю. Чекина, О.М. Голуб. Фосфоресцентный анализ ткани хрусталика в норме и при катаракте. http://www.eyenews.ru/pages.php?id=932&glaukoma=

3. П.П. Филиппов, В.Ю. Аршавский, А.М. Дижур. Биохимия зрительной рецепции. М.: ВИНИТИ, 1987

4. А.Г.Гунин Гистология в таблицах и схемах. http://www.histol.chuvashia.com/tables/sens-2.htm

5. http://www.glazclinic.ru/lechenie-zabolevani-setchatki

Как видят млекопитающие


Млекопитающие - класс позвоночных животных,насчитывающий около 5 тыс. видов. Основной отличительной особенностью которых является вскармливание детёнышей молоком. Млекопитающие распространены почти повсеместно. Его представители заселили все среды жизни, включая поверхность суши, почву, морские и пресные водоемы, приземные слои атмосферы.

Зрение млекопитающих - процесс восприятия млекопитающими видимого электромагнитного излучения, его анализа и формирования субъективных ощущений, на основании которых складывается представление животного о пространственной структуре внешнего мира. Отвечает за данный процесс у млекопитающих зрительная сенсорная система, основы которой сложились ещё на раннем этапе эволюции хордовых. Её периферическую часть образуют органы зрения (глаза), промежуточную (обеспечивающую передачу нервных импульсов) - зрительные нервы, а центральную - зрительные центры в коре головного мозга
Распознавание визуальных стимулов у млекопитающих является результатом совместной работы органов зрения и головного мозга. При этом значительная часть зрительной информации обрабатывается уже на уровне рецепторов, что позволяет многократно сократить объём такой информации, поступающей к мозгу. Устранение избыточности количества информации неизбежно: если объём информации, поступающей на рецепторы зрительной системы, измеряется миллионами бит в секунду (у человека - порядка 1·107 бит/с), то возможности нервной системы по её обработке ограничены десятками бит в секунду.
Органы зрения у млекопитающих развиты, как правило, достаточно хорошо, хотя в их жизни они имеют меньшее значение, чем у птиц: обычно млекопитающие обращают мало внимания на неподвижные предметы. Размеры глаз у млекопитающих относительно невелики. Более крупные глаза имеют ночные звери и животные, обитающие в открытых ландшафтах. У лесных зверей зрение не столь острое, а у роющих подземных видов глаза в большей или меньшей мере редуцированы.

В простейшем случае з рительное восприятие сводится к оценке светлоты (видимой яркости), цветового тона (собственно цвета) и насыщенности (показателя, пропорционального степени отличия цвета от серого равной светлоты) отраженного поверхностью света. Основные механизмы восприятия цвета врожденные, они локализуются на уровне подкорковых образований мозга.

Исследование цветового зрения является одним из направлений основного русла изучения зрительного восприятия. Почти полностью доказано, что ни одно млекопитающее, включая приматов, не обладает цветовым зрением, и если некоторые из их представителей и имеют цветовое зрение, то лишь в весьма рудиментарной форме. Восприятие цвета у млекопитающих происходит через фоточувствительные рецепторы, содержащие пигменты с различной спектральной чувствительностью. У большинства приматов, близких к людям, обнаружено несколько типов фоточувствительных пигментов. За цветное зрение отвечают рецепторы опсины, находящиеся в светочувствительных клетках – колбочках. Откуда принимается, что видение цвета у большинства приматов - «трихроматики» (три вида колбочек). Остальные приматы и часть млекопитающих, с точки зрения трёхкомпонентной теории цветовосприятия - «дихроматики». То есть они имеют всего два вида колбочек в глазах для восприятия цвета.

Ночные млекопитающие снабжены развивающимся цветным зрением, так как адекватный свет и цвет, воспринимаемый колбочками, даёт им возможность приспосабливаться должным образом к окружающей среде. Это связано с тем, что первые млекопитающие вынуждены были вести преимущественно ночной образ жизни (в частности, из-за конкуренции с динозаврами), где восприятие цвета несущественно. Поэтому часть колбочек атрофировалась. Впоследствии в эволюционной линии приматов ген, отвечающий за один из оставшихся двух типов колбочек, дуплицировался (раздвоился), благодаря чему большинство людей сегодня не являются дальтониками (в отличие, например, от собак). Механизмы цветовосприятия сильно зависят от эволюционных факторов, из которых самым очевидным, является удовлетворительное определение источников пищи. У травоядных приматов, цветное восприятие связано с поиском надлежащих (съедобных) листьев и плодов. Большинство млекопитающих не отличают красный цвет от зеленого. Они давно утратили эту способность, присущую птицам, рыбам и рептилиям. Ведь их далекие предки, населявшие планету в одно время с динозаврами, заняли особую экологическую нишу - стали вести ночной образ жизни. Холодными ночами температура тела динозавров резко падала, как и их активность. Зато теплокровные млекопитающие ближе к полуночи выбирались из своих нор и укрытий и, осмелев, бродили в поисках пищи. За эту вольность они платили дефектами зрения. Им было все равно, как окрашена добыча. Их мир был серым, черным, белесым, но никак не разноцветным.

Восприятие света (цвета)
Восприятие «белого» цвета (света) обычно происходит благодаря воздействию всего спектра видимого света, или является реакцией глаза при воздействии нескольких длин волн, типа красного, зелёного, и синего, или даже, смешением только пары цветов, типа синего и жёлтого. Восприятие света обеспечивают находящиеся на сетчатке фоторецепторы: палочки отвечают только за восприятие света, а колбочки обеспечивают цветоразличение
У млекопитающих плохо (по сравнению с рыбами, рептилиями и птицами) развит пинеальный орган: так называемый "третий глаз", отвечающий за восприятие интенсивности света. Его функции пока не слишком хорошо изучены, но, очевидно он помогает отлаживать суточные ритмы в зависимости от солнечного света (млекопитающие меньше от них зависят), а также ориентироваться на местности (опять-таки, птицам и рыбам куда важнее, чем, например, львам).

УФ-зрение
У предков современных млекопитающих хрусталик пропускал ультрафиолетовый свет, и имелся фоторецептор чувствительный к нежесткому ультрафиолету. Но в ходе эволюции у некоторых приматов, в частности у человека, хрусталик перестал пропускать фотоны с длиной волны короче 400 нм, и этот рецептор оказался не у дел.
Из-за этого люди не могут видеть особые узоры на цветах, открытые для насекомых, или следы мочи, оставляемые грызунами. Ученые исследовали хрусталики млекопитающих на способность пропускать свет разных длин волн. Оказалось, что у многих животных нет внутреннего УФ-фильтра. Среди них кошки, собаки, окапи, хорьки и ежи. Это означает, что все они, в отличие от людей, должны воспринимать эту часть светового спектра.

Зрение млекопитающих уступает в некоторых отношениях (дальность видения, широта зрительного поля) зрению птиц, но превосходит его (в особенности у высших форм) по точности восприятия особенностей предметов (форма, окраска и т.д.).
Несмотря на то, что зрение млекопитающих не достигает такой остроты, как у птиц, можно предполагать, что у млекопитающих с бинокулярным зрением при рассматривании окружающих предметов глаза движутся координированно. Такие движения глаз называются содружественными. Как правило, различают два типа движения глаз. В одном случае оба глаза движутся в одном направлении по отношению к координатам головы, в другом случае, когда попеременно смотрят на близкие и далекие предметы, каждое из глазных яблок совершает приблизительно симметричные движения относительно координат головы. При этом угол между зрительными осями обоих глаз меняется: при фиксации далекой точки зрительные оси почти параллельны, при фиксации близкой точки - сходятся. Компенсаторные движения глаз при движениях головы рассмотрены выше; при разглядывании разноудаленных предметов движения - глаз конвергентные и дивергентные. При рассматривании объектов внешнего мира глаза совершают быстрые и медленные следящие движения.

Млекопитающие имеют разное расположение глаз . Так, боковое зрение кролика и лошади увеличивает поле зрения. У обезьян и человека оно ограничено, но за счет одновременного видения предмета двумя глазами расстояние и величина предметов оценивается лучше. У форм, ведущих сумеречный или ночной образ жизни, глаза либо достигают очень крупных размеров, например, у лемуров-долгопятов, сов или козодоев, либо невелики, как, например, у летучих мышей. Тогда недостаток зрения компенсируется высоко развитым слухом, обонянием, осязанием. У роющих подземных видов - кротов, слепцов, гоферов глаза в большей или меньшей степени редуцированы.

Органы зрения млекопитающих отличаются сравнительно простым строением, лишены гребешка, и аккомодация достигается исключительно изменением формы хрусталика под влиянием сокращения ресничной мышцы.
В противоположность слуху и обонянию зрение у млекопитающих развито сравнительно слабо, но обезьяны и многие звери открытых пространств в этом отношении представляют исключение. С другой стороны, роющие млекопитающие имеют недоразвитые глаза: у слепыша они скрыты под кожей, а у сумчатого крота совсем атрофировались.

Наряду с этим у млекопитающих развиваются новые прогрессивные приспособления - бинокулярное зрение, т. е. фокусирование обоих глаз на одном предмете, дающее стереоскопическое зрение, в то время как у большинства позвоночных каждый глаз смотрит отдельно. Кроме того, в затылочных долях полушарий головного мозга развиваются новые вторичные зрительные центры, как уже сказано выше, являющиеся центрами ассоциативной деятельности. Наконец, соответственно экологическим особенностям, строение и функция глаз резко различны у млекопитающих, ведущих ночной и дневной образ жизни. У ночных животных резко повышается чувствительность зрения, что достигается мощным разрастанием хрусталика, заполняющего большую часть глазного яблока. Благодаря этому получается концентрация рассеянного света на небольшом количестве чувствительных клеток. У дневных животных прогрессивно развивается зоркость зрения, что достигается обратным приспособлением.

Полость глазного яблока у них (как и у человека) очень велика, а хрусталик мал, по этому происходит рассеивание изображения на большое число чувствительных клеток.
Как и у других позвоночных, глаз млекопитающего развивается из переднего мозгового пузыря и имеет округлую форму (глазное яблоко). Снаружи глазное яблоко защищено белковой фиброзной оболочкой, передняя часть которой прозрачна (роговица), а остальная - нет (скалера). Следующий слой - сосудистая оболочка, спереди переходящая в радужную оболочку с отверстием в центре - зрачком. Большая часть глазного яблока занята стекловидным телом, заполненным водянистой жидкостью. Поддержание формы глазного яблока обеспечивается за счёт жёсткой склеры и внутриглазного давления, создаваемого этой жидкостью. Эта водянистая жидкость регулярно обновляется: она выделяется в заднюю камеру глаза эпителиальными клетками цилиарного тела, откуда попадает в переднюю камеру через зрачок и далее попадает в венозную систему.

Строение глаза млекопитающего:

1 - скалера,

3 -канал Шлемма,

4 - корень радужной оболочки,

5 - роговица,

6 - радужная оболочка,

7 - зрачок,

8 -передняя камера,

9 -задняя камера,

10 - цилиарное тело,

11 -хрусталик,

12 - стекловидное,

13 - сечатка,

14 - зрительный нерв,

15 - цинновы связки.

Через зрачок отражённый от объектов свет проникает внутрь глаза. Количество пропускаемого света определяется диаметром зрачка, просвет которого автоматически регулируется мышцами радужной оболочки.Хрусталик , удерживаемый на месте цилиарным пояском, фокусирует прошедшие через зрачок лучи света на сечатке - внутреннем слое оболочки глаза, содержащем фоторецепторы - светочувствительные нервные клетки . Сетчатка состоит из нескольких слоёв (изнутри наружу): пигментный эпителий, фоторецепторы, горизонтальные клетки Кахаля, биполярные клетки, амакриновые клетки и ганглионарные клетки.

Окружающие хрусталик мышцы обеспечивают аккомодацию глаза. У млекопитающих для достижения высокой резкости изображения хрусталик при наблюдении близких объектов принимает выпуклую форму, при наблюдении удалённых - почти плоскую. У пресмыкающихся и птиц аккомодация, в отличие от млекопитающих, включает не только изменение формы хрусталика, но и изменение расстояния между хрусталиком и сетчаткой. В целом способность глаза млекопитающего к аккомодации значительно уступает таковой у птиц: у человека она в детстве не превышает 13,5 дптр и заметно снижается с возрастом, а у птиц (особенно ныряющих) она может достигать 40-50 дптр. У мелких грызунов из-за незначительности обзора способность к аккомодации практически утрачена.

Роль защитных образований для глаз играют веки. снабжённые есницами. У внутреннего угла глаза размещается ардерова железа, выделяющая жировой секрет, а в наружном углу - слезная железа, выделения которой (слёзная жидкость) омывают глаз. Слёзная жидкость улучшает оптические свойства роговицы, сглаживая шероховатости её поверхности, а также защищает её от пересыхания и других неблагоприятных воздействий. Эти железы наряду с веками и глазными мышцами относят к вспомогательному аппарату глаза

Как видят млекопитающие


Особенности зрения млекопитающих

Задание 2.2

Зрение млекопитающих


Органы зрения у млекопитающих развиты, как правило, достаточно хорошо, хотя в их жизни они имеют меньшее значение, чем у птиц: обычно млекопитающие обращают мало внимания на неподвижные предметы, так что к стоящему без движения человеку даже столь осторожные звери, как лисица или заяц,могут подойти вплотную. Размеры глаз у млекопитающих относительно невелики; так, у человека масса глаз составляет 1 % от массы головы, в то время как у скворца достигает 15 %. Более крупные глаза имеют ночные звери (например,долгопят) и животные, обитающие в открытых ландшафтах. У лесных зверей зрение не столь острое, а у роющих подземных видов (кроты,гоферы,слепушонки,цокоры,златокроты) глаза в большей или меньшей мере редуцированы, в некоторых случаях (сумчатые кроты,слепыш,слепой крот) даже затянуты кожистой перепонкой.


Строение глаза Млекопитающих


1 - склера,

2 - сосудистая оболочка,

3 - канал Шлемма,

4 - корень радужной оболочки,

5 - роговица,

6 - радужная оболочка,

7 - зрачок,

8 - передняя камера,

9 - задняя камера,

10 - цилиарное тело ,

11 - хрусталик,

12 - стекловидное тело,

13 - сетчатка,

14 - зрительный нерв,

15 - цинновы связки.

Зрение человека

По разным данным, от 70% до более 90% информации человек получает с помощью зрения.

Из-за большого числа этапов процесса зрительного восприятия его отдельные характеристики рассматриваются с точки зрения разных наук - оптики (в том числе биофизики),

Зрение служит третьим основным чувством млекопитающих. Для некоторых зверей, ведущих преимущественно дневной образ жизни и населяющих открытые биотопы, большая часть воспринимаемой информации поступает через зрительный канал. Значение зрения уменьшается у обитателей лесов, зарослей или травянистого покрова. У норников глаза иногда перестают функционировать, зарастая кожей (некоторые кроты, слепыши), или регистрируют лишь изменения освещенности (слепушонки, прометеева полевка). У китообразных глаза используются лишь для ближней ориентации.

Глаза млекопитающих расположены либо по бокам головы, обеспечивая почти круговой обзор, при котором бинокулярное зрение ограничено небольшим сектором, либо фронтально. В последнем случае общий обзор сокращается, но поле бинокулярного зрения увеличивается. Первый тип преобладает у копытных и грызунов, постоянно ожидающих нападения врагов; второй характерен для обезьян, ведущих древесный образ жизни, которым необходимо точно определять расстояния при прыжках с ветки на ветку, и для части хищников, особенно кошачьих, которые, нападая из засады, должны точно фиксировать расстояние до жертвы. Относительная величина глаз возрастает у животных с более острым зрением и у зверей с ночной активностью. Глаз млекопитающих одет наружной оболочкой (склерой) из волокнистой ткани. В передней части склера переходит в прозрачную роговицу. Под склерой лежит сосудистая оболочка с кровеносными сосудами, питающими, глаз. Между склерой и сосудистой оболочкой у некоторых, зверей имеется слой клеток с кристалликами, образующий отражающее световые лучи зеркальце (tapetum), обусловливающее -свечение- глаза отраженным светом (хищники, копытные). Утолщаясь, сосудистая оболочка спереди переходит в радужину и ресничное тело (мышцы), при помощи которой происходит аккомодация глаза изменением формы хрусталика. Радужина играет роль диафрагмы, регулируя освещенность сетчатки изменением величины зрачка. Хрусталик линзообразной формы относительно мал у дневных млекопитающих и резко увеличивается у ведущих ночной образ жизни. К внутренней стороне сосудистой оболочки прилегает сетчатка из наружного пигментного и внутреннего светочувствительного слоев. Колбочки не содержат жировых капель. Отличия между видами сводятся к вариациям в соотношении палочек и колбочек, колебаниях общего числа рецепторных клеток и их количестве на одно волокно зрительного нерва. У норных животных число рецепторных клеток и волокон нерва минимально (по Никитенко, 1969): у слепыша во всей сетчатке 800 тыс. рецепторов и 1900 волокон в зрительном нерве (соотношение 420: 1). У ночных видов и обитателей зарослей оно выше: у ежа 6,7 млн- рецепторов на 8400 волокон (760: 1), у желтогорлой мыши 19,6 млн. и 28 800 (680: 1). Еще больше это число у обитателей открытых ландшафтов: так, у зайца- русака 192,6 млн. рецепторов и 167 400 волокон (115: 1). У макаки- резуса (приматы) 124,4 млн. рецепторов на 1,2 млн. волокон (105: 1), а у кожана (летучие мыши) лишь 8,9 млн. рецепторов на 6900 волокон (ИЗО: 1). Количество рецепторных клеток, в среднем приходящихся на одно нервное волокно зрительного нерва, наименьшее у приматов; это позволяет выявлять в рассматриваемом объекте больше деталей. Многие млекопитающие обладают способностью различать цвета , но, видимо, слабее, чем птицы. С этим связана в среднем менее разно образная расцветка млекопитающих. В то же время млекопитающие распознают особенности формы предметов или их частей, а также движения, позу и мимику. Это обеспечено не усложнением строения сетчатки, а зрительным анализатором в головном мозге, который у млекопитающих сложнее, чем у других позвоночных. Основную роль играет зрительный центр коры полушарий переднего мозга, тогда как значение