Растворы глюкозы. Промышленностью выпускаются растворы глюкозы для инъекций в концентрации 5, 10, 25 и 40%. Вместе с тем, инъекционные растворы глюкозы в значительных количествах готовятся в аптеках. Растворы глюкозы сравнительно нестойки при длительном хранении. Основным фактором, определяющим устойчивость глюкозы в растворе, является рН среды. В щелочной среде происходит ее окисление, карамелизация и полимеризация. При этом наблюдается пожелтение, а иногда побурение раствора. В этом случае под влиянием кислорода образуются оксикислоты: гликолевая, уксусная, муравьиная и другие, а также ацетальдегид и оксиметил-фурфурол (разрушение связи между углеродными атомами). Для предотвращения этого процесса растворы глюкозы стабилизируют ОДМ раствором кислоты хлористоводородной до рН = 3,0-4,0, так как в этой среде происходит минимальное образование 5-оксиметил-фурфурола, обладающего нефрогепатотоксическим действием.

В сильно кислой среде (при рН = 1,0-3,0) в растворах глюкозы образуется.D-глюконовая (сахарная) кислота. При дальнейшем ее окислении, особенно в процессе стерилизации, она превращается в 5-оксиметилфурфурол, вызывающий окрашивание раствора в желтый цвет, что связано с дальнейшей полимеризацией. При рН = 4,0- 5,0 реакция разложения замедляется, а при рН выше 5,0 разложение до оксиметилфурфурола снова усиливается. Повышение рН обусловливает разложение с разрывом цепи глюкозы.

ГФ X предписывает стабилизировать растворы глюкозы смесью натрия хлорида 0,26 г на 1 л раствора и ОДМ раствора кислоты хлористоводородной до рН = 3,0-4,0.

В условиях аптеки для удобства работы этот раствор (известный под названием стабилизатор Вейбеля) приготавливают заранее по следующей прописи:

Натрия хлорида - 5,2 г

Кислоты хлористоводородной разбавленной (8,3 %) 4,4 мл

Воды для инъекций до - 1л

При приготовлении растворов глюкозы (независимо от ее концентрации) стабилизатора Вейбеля добавляют 5 % от объема раствора.

Механизм стабилизирующего действия натрия хлорида изучен недостаточно. Некоторые авторы предполагали, что при добавлении натрия хлорида образуется комплексное соединение по месту альдегидной группы глюкозы. Этот комплекс очень непрочен, натрия хлорид перемещается от одной молекулы глюкозы к другой, замещая альдегидные группы, и тем самым подавляет ход окислительно-восстановительной реакции.

Однако на современном уровне учения о строении Сахаров эта теория не отражает всей сложности происходящих процессов. Другая теория объясняет эти процессы следующим образом. Как известно, в твердом состоянии глюкоза находится в циклической форме. В растворе происходит частичное раскрытие колец с образованием альдегидных групп, причем между ациклической и циклической формами устанавливается подвижное равновесие. Ациклические (альдегидные) формы глюкозы наиболее реакционноспособны к окислению. Высокой устойчивостью характеризуются циклические формы глюкозы с кислородными мостиками между первым и пятым углеродными атомами. Добавление стабилизатора создает в растворе условия, способствующие сдвигу равновесия в сторону более устойчивой к окислению циклической формы. В настоящее время считают, что натрия хлорид не способствует циклизации глюкозы, а в сочетании с кислотой хлористоводородной создает буферную систему для глюкозы.

При термической стерилизации растворов глюкозы без стабилизатора образуются диены, карбоновые кислоты, полимеры, продукты фенольного характера. Заменив термическую стерилизацию на стерилизующую фильтрацию, можно приготовить 5 % -ный раствор глюкозы со сроком годности 3 года без стабилизатора.

Большое значение для стабильности приготавливаемых растворов имеет качество самой глюкозы, которая может содержать кристаллизационную воду. В соответствии с ФС 42-2419-86 производится глюкоза безводная, содержащая 0,5% воды (вместо 10%). Она отличается растворимостью, прозрачностью и цветом раствора. Срок ее годности 5 лет. При использовании глюкозы водной ее берут больше, чем указано в рецепте. Расчет производят по формуле:

х - необходимое количество глюкозы;

а - количество глюкозы безводной, указанное в рецепте;

б - процентное содержание воды в глюкозе по данным анализа.

Rp.: Solutionis Glucosi 40 % - 100ml

Da. Signa. По 10мл внутривенно

Например, глюкоза содержит 9,8 % воды. Тогда водной глюкозы необходимо взять 44,3 г (вместо 40,0 г безводной).

В асептических условиях в мерной колбе емкостью 100 мл в воде для инъекций растворяют глюкозу (44,3 г) «годен для инъекций», добавляют стабилизатор Вейбеля (5 мл) и доводят объем раствора до 100 мл. Проводят первичный химический анализ, фильтруют, укупоривают резиновой пробкой, проверяют на отсутствие механических примесей. В случае положительного контроля флаконы, укупоренные пробками, обкатывают алюминиевыми колпачками и маркируют, проверяют герметичность укупорки.

Ввиду того, что глюкоза - хорошая среда для развития микроорганизмов, полученный раствор стерилизуют немедленно после приготовления при 100 °С в течение 1 часа или при 120 °С в течение 8 минут. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску. Срок хранения раствора - 30 суток.

Дата №рецепта

Glucosi 44,3 (вл. 9,8%)

Liguoris Wejbeli 5 ml

Sterilis У общ = 100 ml

Приготовил: (подпись)

Проверил: (подпись)

Растворы натрия гидрокарбоната. Растворы натрия гидрокарбоната в концентрации 3, 4, 5 и 7 % применяются для капельного внутривенного введения при гемолизе крови, ацидозах, для реанимации (при клинической смерти), для регулирования солевого равновесия.

Rp.: Solutionis Natrii hydrocarbonatis 5 % - 100 ml

При использовании натрия гидрокарбоната «годен для инъекций» не всегда удается получить прозрачные и устойчивые растворы, поэтому применяют натрия гидрокарбонат «х.ч.» или «ч.д.а.». Если натрия гидрокарбонат содержит влагу, то делают пересчет на сухое вещество. По данной прописи 5,0 г натрия гидрокарбоната (в асеп- тических условиях) помещают в мерную колбу на 100 мл, растворяют в части воды для инъекций, затем доводят объем раствора до 100 мл. Ввиду потенциальной нестабильности натрия гидрокарбоната его растворяют при возможно более низкой температуре (15- 20 °С), избегая сильного взбалтывания раствора. Проводят первичный химический анализ, фильтруют, укупоривают и проверяют на отсутствие механических примесей. При положительном анализе флакон, укупоренный резиновой пробкой, закрывают металлическим колпачком и обкатывают. Во избежание разрыва флаконов при стерилизации их заполняют раствором не более чем на 80 % объема. Раствор стерилизуют при 120 С 8 минут.

Во время стерилизации натрия гидрокарбонат подвергается гидролизу. При этом выделяется углерода диоксид и образуется натрия карбонат:

2NaHC0 3 →Na 2 C0 3 + H 2 0 + C0 2

При охлаждении идет обратный процесс, углекислота растворяется и образуется натрия гидрокарбонат. Поэтому для достижения равновесия в системе простерилизованные растворы можно использовать только после их полного охлаждения, не ранее чем через 2 часа, перевернув их несколько раз с целью перемешивания и растворения углекислоты, находящейся над раствором. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску.

Полученный раствор должен быть бесцветным и прозрачным, рН = 9,1-8,9. При внутриаптечной заготовке срок хранения раствора при комнатной температуре 30 суток.

Прозрачные растворы с концентрацией натрия гидрокарбоната 7-8,4 % можно получить при стабилизации трилоном Б с последующей микрофильтрацией через мембранные фильтры «Владипор» типа МФА-А №1 или № 2 с предфильтром из фильтровальной бумаги.

ИЗОТОНИЧЕСКИЕ РАСТВОРЫ

Изотонические растворы - это растворы, которые имеют осмотическое давление, равное осмотическому давлению жидкостей организма (крови, плазмы, лимфы, слезной жидкости и др.) .

Название изотонический происходит от гр. isos - равный, tonus - давление.

Осмотическое давление плазмы крови и слезной жидкости организма в норме находится на уровне 7,4 атм (72,82 10 4 Па). При введении в организм всякий раствор индифферентного вещества, который отклоняется от естественного осмотического давления сыворотки, вызывает резко выраженное чувство боли, которое будет тем сильнее, чем больше отличается осмотическое давление вводимого раствора и жидкости организма.

Плазма, лимфа, слезная и спинномозговая жидкости имеют постоянное осмотическое давление, но при введении в организм инъекционного раствора осмотическое давление жидкостей изменяется. Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием так называемых осморегуляторов.

При введении раствора с высоким осмотическим давлением (гипертонический раствор) в результате разности осмотических давлений внутри клетки или эритроцитов и окружающей их плазмой начинается движение воды из эритроцита до выравнивания осмотических давлений. Эритроциты при этом, лишаясь части воды, теряют свою форму (сморщиваются) - происходит плазмолиз.

Гипертонические растворы в медицинской практике используются для снятия отеков. Гипертонические растворы натрия хлорида в концентрациях 3, 5, 10 % применяют наружно для оттока гноя при лечении гнойных ран. Гипертонические растворы также оказывают противомикробное действие.

Если в организм вводится раствор с низким осмотическим давлением (гипотонический раствор), жидкость при этом будет проникать внутрь клетки или эритроцита. Эритроциты начинают разбухать, и при большой разнице в осмотических давлениях внутри и вне клетки оболочка не выдерживает давления и разрывается - происходит гемолиз.

Клетка или эритроцит при этом погибают и превращаются в инородное тело, которое может вызвать закупорку жизненно важных капилляров или сосудов, в результате чего наступает паралич отдельных органов или же смерть. Поэтому такие растворы вводятся в небольших количествах. Целесообразно вместо гипотонических растворов прописывать изотонические.

Изотоническая концентрация прописанного лекарственного вещества не всегда указывается в рецепте. Например, врач может выписать рецепт таким способом:

Rp.: Solutionis Glucosi isotonicae 200 ml

Da. Signa. Для внутривенных вливаний

В этом случае провизор-технолог должен рассчитать изотоническую концентрацию.

Способы расчета изотонических концентраций . Существует несколько способов расчета изотонических концентраций: метод, основанный на законе Вант-Гоффа или уравнении Менделеева-Клапейрона; метод, основанный на законе Рауля (по криоскопическим константам); метод с использованием изотонических эквивалентов по натрия хлориду.

Расчет изотонических концентраций по закону Вант-Гоффа . По закону Авогадро и Жерара 1 грамм-молекула газообразного вещества при 0 "С и давлении 760 мм рт. ст. занимает объем 22,4 л. Этот закон можно отнести и к растворам с невысокой концентрацией веществ.

Чтобы получить осмотическое давление, равное осмотическому давлению сыворотки крови 7,4 атм, необходимо 1 грамм-молекулу вещества растворить в меньшем количестве воды: 22,4: 7,4 = 3,03 л.

Но учитывая, что давление возрастает пропорционально абсолютной температуре (273 К), необходимо внести поправку на температуру тела человека (37 °С) (273 + 37 = 310 К). Следовательно, для сохранения в растворе осмотического давления в 7,4 атм 1 грамм-моль вещества следует растворить не в 3,03 л растворителя, а в несколько большем количестве воды.

Из 1 грамм-моля недиссоциирующего вещества нужно пригото-вить раствор

3,03 л -273 К

х л -310 К

Однако в аптечных условиях целесообразно вести расчеты для приготовления 1 л раствора:

1 г/моль - 3,44 л

х г/моль - 1л

Следовательно, для приготовления 1 л изотонического раствора какого-либо лекарственного вещества (неэлектролита) необходимо взять 0,29 г/моль этого вещества, растворить в воде и довести объем раствора до 1 л:

т = 0,29М или 0,29 =

где т - количество вещества, необходимое для приготовления 1 л изотонического раствора, г;

0,29 - фактор изотонии вещества-неэлектролита;

М – молекулярная масса данного лекарственного вещества.

т = 0,29 М; т = 0,29 180,18 = 52,22 г/л.

Следовательно, изотоническая концентрация глюкозы составляет 5,22 %. Тогда, согласно приведенному выше рецепту, для приготовления 200 мл изотонического раствора глюкозы ее необходимо взять 10,4 г.

5, 2 л – 100

х г - 200 мл

Зависимость между осмотическим давлением, температурой, объемом и концентрацией в разбавленном растворе неэлектролита можно также выразить уравнением Менделеева-Клапейрона:

PV = nRT,

Р - осмотическое давление плазмы крови (7,4 атм);

V - объем раствора, л; R - газовая постоянная, выраженная для данного случая в атмосферо-литрах (0,082);

Т - абсолютная температура тела (310 К);

п - число грамм-молекул растворенного вещества.

или т= 0,29*М.

При расчете изотонических концентраций электролитов как по закону Вант-Гоффа, так и уравнению Менделеева-Клапейрона, следует внести поправку, то есть величину (0,29" М) необходимо разделить на изотонический коэффициент I, который показывает, во сколько раз увеличивается число частиц при диссоциации (по сравнению с недиссоциирующим веществом), и численно равен:

i = 1 + а (п - 1),

i - изотонический коэффициент;

а - степень электролитической диссоциации;

п - число частиц, образующихся из одной молекулы вещества при диссоциации.

Например, при диссоциации натрия хлорида образуется две частицы (ион Na + и ион С1ˉ), тогда, подставив в формулу значения а = 0,86 (берется из таблиц) и п = 2, получают:

i = 1 + 0,86 (2 - 1) = 1,86.

Следовательно, для NaCl и ему подобным бинарным электролитам с однозарядными ионами i = 1,86. Пример для СаС1 2: п = 3, а = 0,75,

i=l + 0,75 (3 - 1) = 2,5.

Следовательно, для СаС1 2 и подобным ему тринарным электролитам

i = 2,5 (СаС1 2 , Na 2 S0 4 , MgCl 2 , Na 2 HP0 3 и др.).

Для бинарных электролитов с двухзарядными ионами CuS0 4 , MgS0 4 , ZnS0 4 и др. (а = 0,5; п = 2):

i = 1 + 0,5(2-1) = 1,5.

Для слабых электролитов (борная, лимонная кислоты и др.) (а = 0,1; п = 2):

i = 1+ 0,1 (2-1) = 1,1.

Уравнение Менделеева-Клапейрона с изотоническим коэффициентом имеет вид: , тогда, решая уравнение в отношение т, находят:

Для натрия хлорида, например,

Следовательно, для приготовления 1 л изотонического раствора натрия хлорида необходимо его взять 9,06 г, или изотоническим будет раствор натрия хлорида в концентрации 0,9 %.

Для определения изотонических концентраций при приготовлении растворов, в состав которых входят несколько веществ, необходимо проведение дополнительных расчетов. По закону Дальтона осмотическое давление смеси равно сумме парциальных давлений ее компонентов:

Р = Р 1 + Р 2 + Р 3 + …. и т.д.

Это положение может быть перенесено й на разбавленные растворы, в которых необходимо вначале рассчитать, какое количество изотонического раствора получается из вещества или веществ, указанных в рецепте. Затем устанавливают по разности, какое количество изотонического раствора должно дать вещество, с помощью которого раствор изотонируется, после чего находят количество этого вещества.

Для изотонирования растворов применяют натрия хлорид. Если прописанные вещества не совместимы с ним, то можно использовать натрия сульфат, натрия нитрат или глюкозу.

Rp.: Hexamethylentetramini 2,0

Natrii chloridi q.s.

Aquae pro injectionibus ad 200 ml

ut fiat solutio isotonica

Sterilisa! Da. Signa. Для инъекций

Рассчитывают количество изотонического раствора, полученного за счет 2,0 г уротропина (М.м. = 140). Изотоническая концентрация уротропина будет: 0,29 140 = 40,6 г или 4,06 %.

4,06 - 100 мл х = 50 мл.

2,0 - х

Определяют количество изотонического раствора, которое должно быть получено за счет добавления натрия хлорида:

200 мл - 50 мл = 150 мл.

Рассчитывают количество натрия хлорида, необходимое для получения 150 мл изотонического раствора:

0,9 г - 100 мл х =(0,9 150): 100=1,35 г.

х г - 150 мл

Таким образом, для получения 200 мл изотонического раствора, содержащего 2,0 г гексаметилентетрамина, необходимо добавить 1,35 г натрия хлорида.

Расчет изотонических концентраций по закону Рауля, или криоскопическому методу. По закону Рауля давление пара над раствором пропорционально молярной доле растворенного вещества.

Следствие из этого закона устанавливает зависимость между понижением давления пара, концентрацией вещества в растворе и его температурой замерзания, а именно: понижение температуры замерзания (депрессия) пропорционально понижению давления пара и, следовательно, пропорционально концентрации растворенного вещества в растворе. Изотонические растворы различных веществ замерзают при одной и той же температуре, то есть имеют одинаковую температурную депрессию 0,52 °С.

Депрессия сыворотки крови (Δt) равна 0,52 °С. Следовательно, если приготовленный раствор какого-либо вещества будет иметь депрессию, равную 0,52 °С, то он будет изотоничен сыворотке крови.

> Депрессия (понижение) температуры замерзания 1 %-ного раствора лекарственного вещества (Δt) показывает, на сколько градусов понижается температура замерзания 1 %-ного раствора лекарственного вещества по сравнению с температурой замерзания чистого растворителя.

Зная депрессию 1 % -ного раствора любого вещества, можно определить его изотоническую концентрацию.

Депрессии 1 %-ных растворов приведены в приложении 4 учебника. Обозначив депрессию 1 % -ного раствора вещества величиной At, определяют концентрацию раствора, имеющего депрессию, равную 0,52 °С, по следующей формуле:

Например, необходимо определить изотоническую концентрацию глюкозы х, если депрессия 1 %-ного раствора глюкозы = 0,1 °С:

1%-0.1

Следовательно, изотоническая концентрация раствора глюкозы будет составлять 5,2 %.

При расчете количества вещества, необходимого для получения изотонического раствора, пользуются формулой:

где т 1 - количество вещества, необходимое для изотонирования, г;

V - объем раствора по прописи в рецепте, мл.

г глюкозы необходимо на 200 мл изотонического раствора.

При двух компонентах в прописи для расчета изотонических концентраций используют формулу:

,

где т 2

Δt 2 - депрессия температуры замерзания 1 % -ного раствора прописанного вещества;

С 2 - концентрация прописанного вещества, %;

Δt. - депрессия температуры замерзания 1 % -ного раствора вещества, взятого для изотонирования раствора, прописанного в рецепте;

V - объем прописанного в рецепте раствора, мл;

Например:

Rp.: Sol. Novocaini 2 % 100 ml

Natrii sulfatis q.s.,

ut fiat sol. Isotonica

Da. Signa. Для инъекций

Δt 1 - депрессия температуры замерзания 1 % -ного раствора натрия сульфата (0,15 °С);

At 2 - депрессия температуры замерзания 1 % -ного раствора новокаина (0,122 °С);

С 2 - концентрация раствора новокаина (2 %).

Г натрия сульфата.

Следовательно, для приготовления изотонического раствора новокаина по приведенному рецепту необходимо взять 2,0 г новокаина и 1,84 г натрия сульфата.

При трех и более компонентах в прописи для расчета изотонических концентраций пользуются формулой:

,

где т 3 - количество вещества, необходимое для изотонирования раствора, г;

0,52 °С - депрессия температуры замерзания сыворотки крови;

Δt 1 , - депрессия температуры замерзания 1 % -ного раствора вещества, взятого для изотонирования раствора, прописанного в рецепте;

Δt 2 - депрессия температуры замерзания 1 % -ного раствора второго компонента в рецепте;

С 2 - концентрация второго компонента в рецепте, %;

Δt 3 - депрессия температуры замерзания раствора третьего компонента в рецепте; С 3 - концентрация третьего компонента в рецепте;

V

Например:

Rp.: Atropini sulfatis 0,2

Morphini hydrochloridi 0,4

Natrii chloridi q.s.

Aquae pro injectionibus ad 20 ml

ut fiat solutio isotonica

Da. Signa. Для инъекций

Δt 1 - депрессия температуры замерзания 1 % -ного раствора натрия хлорида (0,576 °С);

Δt 2 - депрессия температуры замерзания 1 % -ного раствора атропина сульфата (0,073 "С);

С 2 - концентрация атропина сульфата (1 %);

Δt 3 - депрессия температуры замерзания 1 % -ного раствора морфина гидрохлорида (0,086 °С);

С 3 - концентрация морфина гидрохлорида (2 %);

V - объем раствора, прописанного в рецепте.

0,52-(0,073 1 + 0,086-2)-20 п ппг.„ л „

Г натрия хлорида.

При расчете изотонической концентрации по криоскопическому методу основной источник ошибок - отсутствие строгой пропорциональной зависимости между концентрацией и депрессией. Важно отметить, что отклонения от пропорциональной зависимости индивидуальны для каждого лекарственного вещества.

Так, для раствора калия йодида имеется практически линейная (пропорциональная) зависимость между концентрацией и депрессией. Поэтому изотоническая концентрация некоторых лекарственных веществ, определенная экспериментальным методом, близка к расчетной, для других же наблюдается значительная разница.

Второй источник ошибок - погрешность опыта при практическом определении депрессии 1 % -ных растворов, о чем говорят различные значения депрессий (Δt), опубликованные в некоторых источниках.

Расчет изотонических концентраций с использованием эквивалентов по натрия хлориду. Более универсальный и точный метод расчета изотонических концентраций растворов фармакопейный (принят ГФ XI) основан на использовании изотонических эквивалентов лекарственных веществ по натрия хлориду. В аптечной практике он используется наиболее часто.

> Изотонический эквивалент (Е) по натрия хлориду показывает количество натрия хлорида, создающее в одинаковых условиях осмотическое давление, равное осмотичес- , кому давлению 1,0 г лекарственного вещества. Например, 1,0 г новокаина по своему осмотическому эффекту эквивалентен 0,18 г натрия хлорида (см. приложение 4 учебника). Это означает, что 0,18 г натрия хлорида и 1,0 г новокаина создают одинаковое осмотическое давление и в равных условиях изотонируют одинаковые объемы водного раствора.

Зная эквиваленты по натрия хлориду, можно изотонировать любые растворы, а также определить изотоническую концентрацию.

Например:

1,0 г новокаина эквивалентен 0,18 г натрия хлорида,

а 0,9 г натрия хлорида - х г новокаина;

г

Следовательно, изотоническая концентрация новокаина составляет 5 %.

Rp.: Dimedroli 1,0

Natrii chloridi q.s.

Aquae pro injectionibus ad 100 ml

ut fiat solutio isotonica

Da. Signa. Внутримышечно по 2 мл 2 раза в день

Для приготовления 100 мл изотонического раствора натрия хлорида потребовалось бы 0,9 г (изотоническая концентрация - 0,9 %).

Однако, часть раствора изотонируется лекарственным веществом (димедролом).

Поэтому сначала учитывают, какая часть прописанного объема изотонируется 1,0 г димедрола. При расчете исходят из определения изотонического эквивалента по натрия хлориду. По таблице (приложение 4) находят, что Е димедрола по натрия хлориду равен 0,2 г, то есть 1,0 г димедрола и 0,2 г натрия хлорида изотонируют одинаковые объемы водных растворов.

Rp.: Solutionis Novocaini 2 % 200 ml

Natrii chloridi q.s

ut fiat solutio isotonica

Da. Signa. Для внутримышечного введения

В данном случае для приготовления 200 мл изотонического раствора натрия хлорида потребовалось бы 1,8 г:

0,9 - 100 г

Прописанные 4,0 г новокаина эквивалентны 0,72 г натрия хлорида:

1,0 новокаина - 0,18 натрия хлорида

4,0 новокаина – х натрия хлорида

Следовательно, натрия хлорида надо взять 1,8 - 0,72 = 1,08 г.

Rp.: Strichnini nitratis 0,1 % 50 ml

Natrii nitratis q.s.,

ut fiat solutio isotonica

Da.Signa. По 1 мл 2 раза в день под кожу

Вначале определяют количество натрия хлорида, необходимое для приготовления 50 мл изотонического раствора:

0,9 - 100 г

1,0 г стрихнина нитрата – 0,12 г натрия хлорида

0,05 г стрихнина нитрата - х г натрия хлорида

Следовательно, натрия хлорида требуется 0,45 - 0,01 = 0,44 г.

Но в рецепте указано, что раствор необходимо изотонировать натрия нитратом. Поэтому проводят перерасчет на это вещество (эквивалент натрия нитрата по натрия хлориду - 0,66):

0,66 г натрия хлорида – 1,0 г натрия нитрата г

0,44 г натрия хлорида – х г натрия нитрата

Таким образом, по приведенному рецепту для изотонирования требуется 0,67 г натрия нитрата.

Исходя из известных эквивалентов по натрия хлориду, были вычислены изотонические эквиваленты по глюкозе, натрия нитрату, натрия сульфату и кислоте борной, которые приведены в приложении 4 учебника. С их использованием приведенные выше расчеты упрощаются. Например:

Rp.: Solutionis Ephedrini hydrochloridi 2 % 100 ml

ut fiat solutio isotonica

Da. Signa. Для инъекций

Изотонический эквивалент эфедрина гидрохлорида по глюкозе равен 1,556. Прописанные в рецепте 2,0 г эфедрина гидрохлорида будут создавать такое же осмотическое давление, как 3,11 г глюкозы (2,0* 1,556). Так как изотоническая концентрация глюкозы равна 5,22 %, для изотонирования раствора эфедрина гидрохлорида ее следует взять 5,22 - 3,11 = 2,11 г.

Расчет изотонических концентраций по формулам. Осмотическое давление в водных растворах одного или нескольких веществ (которое равно осмотическому давлению 0,9 % -ного раствора натрия хлорида) можно выразить следующим уравнением:

т 1 *Е 1 + т 2 *Е 2 + ... + т n *Е n + т x Е x = 0,009 V, откуда

,

где т x - масса искомого вещества, г;

Е x - изотонический эквивалент по натрия хлориду искомого вещества;

т 1, m 2 ... - массы прописанных в рецепте веществ;

Е 1 , Е 2 ... - изотонические эквиваленты веществ по натрия хлориду;

V - объем раствора.

По формуле (1) можно определить количество различных лекарственных или вспомогательных веществ, которые необходимо добавить к раствору до изотонии для водных инъекций, глазных капель, примочек, полосканий.

Например:

Rp.: Solutionis Morphini hydrochloridi 1 % 100ml

ut fiat solutio isotonica

Misce. Da. Signa. По 1 мл под кожу

Для изотонирования инъекционного раствора необходимо добавить 4,17 г глюкозы безводной сорта «Для инъекций».

Rp.: Solutionis Argenti nitratis 0,5 % 10ml

Natrii nitratis q.s.,

ut fiat solutio isotonica

Misce. Da. Signa. По 2 капли 1 раз в день

Rp.: Solutionis Magnesii sulfatis isotonica 100 ml

Da. Signa. По 10 мл внутривенно 1 раз в день

Для приготовления изотонического раствора необходимо взять 6,43 г магния сульфата сорта «Для инъекций».

Изотонический раствор натрия хлорида (0,9 % -ный) создает осмотическое давление, равное 7,4 атм. Такое же осмотическое давление имеет плазма крови. Определить осмотическое давление в инъекционном растворе можно по следующей формуле:

где Р - осмотическое давление, атм.

Например:

Rp.: Natrii chloride 5,0

Kalii chloridi 1,0

Natrii acetates 2,0

Aquae pro injectionibus ad 1000 ml

Misce. Da. Signa. Для внутривенного введения («Ацесоль»)

Раствор «Ацесоль» гипотоничен. Необходимо приготовить раствор, чтобы он был изотоническим, сохраняя соотношение солей - натрия хлорид: калия хлорид: натрия ацетат - 5:1:2 (или то же самое 1: 0, 2: 0,4).

Количество веществ, которые должны быть в растворе (сохраняя их соотношение и при этом раствор должен быть изотоничным), можно рассчитать по следующей формуле:

,

где т и - масса искомого вещества, г;

т 1 - масса натрия хлорида в растворе «Ацесоль», г;

т 2 - масса калия хлорида в растворе «Ацесоль», г;

т 3 - масса натрия ацетата в растворе «Ацесоль», г;

E v E 2 , Е 3 - соответствующие изотонические эквиваленты по натрия хлориду;

V - объем раствора.

(сумма 5 1 + 1 0,76 + 2 0,46 равна 6,68).

Таким образом, чтобы раствор был изотоничным и при этом сохранялось соотношение солей как 1: 0,2: 0,4, к нему необходимо добавить: натрия хлорида 6,736 - 5 =1,74 г, калия хлорида 1,347 - 1 = 0,35 г, натрия ацетата 2,694 - 2= 0,69 г.

Расчет по формуле (3) можно проводить для гипертонических растворов с целью уменьшения количества веществ и приведения растворов к норме (изотонии).

Формулы (1), (2) и (3) впервые предложил для использования в аптечной практике ассистент кафедры технологии лекарств Запорожского медицинского института кандидат фармацевтических наук П.А. Логвин.

Наряду с изотоничностью важной характеристикой осмотического давления растворов является осмолярность. Осмолярность (осмоляльность) - величина оценки суммарного вклада различных растворенных веществ в осмотическое давление раствора.

Единицей осмолярности является осмоль на килограмм (осмоль/кг), на практике обычно используется единица миллиосмоль на килограмм (мосмоль/кг). Отличие осмолярности от осмоляльности в том, что при их расчете используют различные выражения концентрации растворов: молярную и моляльную.

Осмолярность - количество осмолей на 1 л раствора. Осмоляльность - количество осмолей на 1 кг растворителя. Если нет других указаний, осмоляльность (осмолярность) определяют с помощью прибора осмометра.

Определение величины осмолярности растворов важно при применении парентерального питания организма. Фактором ограничения при парентеральном питании является вводимое количество жидкости, оказывающее воздействие на систему кровообращения и водно-электролитный баланс. Учитывая определенные пределы «выносливости» вен, нельзя использовать растворы произвольной концентрации. Осмолярность около 1100 мосмоль/л (20 %-ный раствор сахара) у взрослого является верхней границей для введения через периферическую вену.

Осмолярность плазмы крови составляет «коло 300 мосмоль/л, что соответствует давлению около 780 кПа при 38 °С, которая является исходной точкой стабильности инфузионных растворов. Величина осмолярности может колебаться в пределах от 200 до 700 мосмоль/л.

Технология изотонических растворов. Изотонические"растворы готовят по всем правилам приготовления растворов для инъекций. Наиболее широкое применение получил изотонический раствор натрия хлорида.

Rp.: Solutionis Natrii chloridi 0,9 % 100 ml

Da. Signa. Для внутривенного введения

Для приготовления раствора натрия хлорид предварительно нагревают в суховоздушном стерилизаторе при температуре 180 °С в течение 2 часов с целью разрушения возможных пирогенных веществ. В асептических условиях на стерильных весочках отвешивают простерилизованный натрия хлорид, помещают в стерильную мерную колбу вместимостью 100 мл и растворяют в части воды для инъекций, после растворения доводят водой для инъекций до объема 100 мл. Раствор фильтруют в стерильный флакон, контролируют качество, герметически укупоривают стерильной резиновой пробкой под обкатку металлическим колпачком. Стерилизуют в автоклаве при температуре 120 °С в течение 8 минут. После стерилизации проводят вторичный контроль качества раствора и оформляют к отпуску. Срок годности раствора, приготовленного в условиях аптек,- 1 месяц.

Дата № рецепта

Natrii chloride 0,9

Aquae pro injectionibus ad 100 ml

Sterilis V общ =100 ml

Приготовил: (подпись)

Проверил: (подпись)


Похожая информация.


Идея введения лекарственных веществ через кожный покров принадлежит врачу Фуркруа (1785), который с помощью скарифика- торов делал на коже насечки и в полученные ранки втирал лекарственные вещества. Впервые подкожное впрыскивание лекарственных растворов было осуществлено в начале 1851 г. русским врачом Владикавказского военного госпиталя. Он использовал часть баро- метрической трубки с поршнем, на свободном конце которой укреплялся серебряный наконечник, вытянутый в иглу. В 1852 г. чешским врачом Правацем был предложен шприц современной конструкции.

25.1. ЛЕКАРСТВЕННЫЕ ФОРМЫ

Инъекционные лекарственные формы (от лат. injectio - впрыскивание) - стерильные водные и неводные растворы, суспензии, эмульсии и сухие твердые вещества (порошки, пористые массы и таблетки), которые растворяют стерильной водой непосредственно перед введением в организм при помощи шприца с нарушением целости кожных покровов или слизистых оболочек.

Инъекционные растворы объемом 100 мл и более относятся к инфузионным (от лат. infusio - вливание).

Преимущества инъекционного способа введения:

1. Быстрота действия (иногда через несколько секунд).

2. Возможность введения лекарственных препаратов больному, находящемуся в бессознательном состоянии.

3. 100% биодоступность, так как лекарственные вещества вводятся, минуя желудочно-кишечный тракт, печень - органы, способные изменять и разрушать лекарственные вещества, для которых невозможны другие способы введения (препараты инсулина, антибиотики, гормоны и др.).

4. Локализация действия лекарственных веществ в зоне укола (например, анестезия местная, проводниковая, инфильтрационная);

5. Отсутствие ощущений, связанных с неприятным запахом и вкусом лекарственных препаратов.

Недостатки инъекционного способа введения:

1. Нарушаются защитные барьеры организма, возникает серьезная опасность внесения инфекции.

2. Возникает опасность эмболии вследствие попадания твердых частиц или пузырьков воздуха, возможен летальный исход.

3. Введение инфузионных растворов непосредственно в ткани может вызвать сдвиги осмотического давления, рН, возникает резкая боль, жжение, иногда лихорадочные явления.

4. Инъекционный способ введения требует высокой квалификации медицинского персонала. Неумелое введение приводит к повреждению нервных окончаний, стенок кровеносных сосудов или другим опасным последствиям.

5. Высокая стоимость - всегда выше энтеральных лекарственных форм одного и того же наименования.

Виды инъекционных манипуляций

В зависимости от места и глубины введения лекарственных препаратов применяют инъекции следующих видов: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинномозговые, внутричерепные, внутрибрюшинные, внутриплевральные, внутрисуставные, инъекции в сердечную мышцу и др.

А. Внутривенные вливания

Внутривенные вливания осуществляют в поверхностные вены области локтевого или коленного сгиба. Внутривенные вливания обеспечивает мгновенное наступление действия лекарства и практически 100% биодоступность.

Следует знать, что внутривенные вливания могут сопровождаться серьезными осложнениями: тромбообразованием, воспалением вен с последующей тромбоэмболией легочной артерии.

Причинами таких осложнений могут быть:

Некачественное внутривенное вливание (попадание пузырька газа или кусочка резины, пробки в вену);

Некачественный раствор препарата (высокое значение рН раствора, механические включения, присутствующие в растворе);

Выбор слишком маленькой вены для объема введенного раствора.

Внутривенные вливания осуществляют с помощью трансфузионных систем (рис. 25.1).

Рис. 25.1. Внутривенное вливание и трансфузионные системы

Б. Внутримышечные инъекции

Основные места для инъекций: дельтовидная мышца руки, большая ягодичная и латеральная мышцы (рис. 25.2). Внутримышечный путь введения считается менее опасным и более легким в исполнении, чем внутривенный. Действие препарата наступает несколько позже в сравнении с внутривенным, но быстрее подкожного. Процедура наиболее болезненна в сравнении с другими.

Рис. 25.2. Внутримышечные инъекции

Для внутримышечных инъекций необходим правильный выбор длины иглы. Длина иглы должна быть больше толщины жировой прослойки пациента.

Максимальный объем вводимого раствора - 2,0 мл в мышцы руки или бедра и не более 5,0 мл - в ягодицу. Место инъекции должно быть в максимально возможной степени удалено от главных нервов и кровеносных сосудов, чтобы избежать повреждения нервных окончаний и случайного внутривенного введения.

Для замедления (пролонгирования) действия препарата применяют его масляные растворы или эмульсии.

В. Внутрикожные (интрадермальные) инъекции

Инъекции делаются в основном в область предплечья. Лекарственные вещества вводят в пространство между эпидермисом и дермой на глубину 1-5 мм (рис. 25.3). Максимальный объем вводимого раствора - 0,1 мл.

Чаще всего этим методом вводят диагностические, иммунологические и косметологические препараты. Используются тонкие иглы, специальные шприцы.

Г. Подкожные инъекции

Подкожное введение - универсальный метод введения лекарственных средств как скоропомощного, так и пролонгированного действия. Инъекцию делают во внутреннюю поверхность руки, бедра, нижнюю часть живота. Максимальное количество вводимого раствора - 2 мл. Иногда при так называемых капельных инъекциях под кожу вводят, не вынимая иглы, в течение 30 мин до 500 мл жидкости (рис. 25.4).

Рис. 25.3. Внутрикожные инъекции

Рис. 25.4. Подкожные инъекции

Фармакокинетика подкожного введения примерно равна внутримышечному, с некоторым замедлением.

Для ускорения действия лекарств применяют 2 способа:

Перед введением массируют кожу в месте укола;

Вводят одновременно вазодилататоры, увеличивающие всасываемость веществ.

Множество лекарственных средств назначают подкожно. Наиболее важными являются гепарины и инсулины. Для снижения объема инъекции важно, чтобы растворимость субстанций была максимальной.

Пролонгирование действия лекарств, например морфина, инсулина, гепарина, достигается или введением препарата в виде растворов в масле, суспензий, эмульсий, или установкой под кожей специальных устройств, содержащих микрокапсулы препарата в сетке-дозаторе (рис. 25.5).

Подкожная ткань - идеальный участок для внедрения таких устройств. Внедрение часто требует хирургической процедуры. Материал устройства биологически совместим с тканями. Примеры вживляемых устройств: Norplant ?, Oreton ?, Percorten ? и осмотически управляемый мини-насос (Alzet ?), который может выделять молекулы препарата в течение 21 дня.

В последние годы предложен безболезненный безыгольный метод введения лекарственного препарата. Он основан на способнос- ти струи вещества с большой кинетической энергией преодолевать сопротивление и проникать в ткани. При безыгольной инъекции раствор лекарственного вещества вводится в ткани очень тонкой струей (диаметром в десятые и сотые доли миллиметра) под высоким давлением (до 300 кгс/см). Способ такого введения лекарственных веществ по сравнению с обычными инъекциями с помощью иглы имеет преимущества: безболезненность инъекций, быстрое наступление эффекта, уменьшение требуемой дозы, невозможность передачи «шприцевых инфекций», более редкая стерилизация инъектора, увеличение количества инъекций, проводимых в единицу времени (до 1000 инъекций в час).

Рис. 25.5. Подкожные устройства-дозаторы (увеличено)

Шприцы для подкожных и внутримышечных инъекций

По способу крепления иглы все шприцы подразделяют на 3 вида: Slip-Tip?, эксцентриковый Slip-Tips? и Luer-Lok?. По конструкции шприцы разделяют на 2 класса:

Двухкомпонентные (корпус и плунжер) (рис. 25.6);

Трехкомпонентные (корпус, плунжер и резиновый уплотнитель поршня). Резиновый уплотнитель позволяет снизить силу трения частей шприца друг о друга при введении лекарственных препаратов. Ход поршня стал плавным, а укол - менее болезненным (рис. 25.7).

Рис. 25.6. Шприцы Луер двух- и трехкомпонентные

Рис. 25.7. Игла, 5 типоразмеров

Рис. 25.8. Шприц Луер, оснащенный мембранным фильтром для дополнительной фильтрации раствора. Фильтродержатель. Фильтрующая мембрана (увеличено)

25.2. РАСТВОРИТЕЛИ, ЛЕКАРСТВЕННЫЕ СРЕДСТВА И ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ИЗГОТОВЛЕНИЯ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Для изготовления инъекционных растворов используют: лекарственные средства, растворители, вспомогательные вещества, тару и упаковку.

Качество и квалификация всех перечисленных компонентов должны быть указаны в нормативной документации (ГФ, ФС, ФСП), утвержденной МЗ РФ.

А. Растворители

Основные требования, предъявляемые к растворителям

В качестве растворителей применяют: воду для инъекций, жирные масла и этилолеат. В качестве комплексного растворителя могут быть использованы этанол, глицерин, пропиленгликоль, ПЭО-400, спирт бензиловый, бензилбензоат или их смеси.

1. Вода для инъекций. Для изготовления растворов для инъекций используют воду для инъекций, которая должна выдерживать испытания на воду очищенную, а также быть апирогенной (см. главу 11). Воду для инъекций получают в асептических условиях с учетом требований приказа Минздрава? 309.

2. Неводные растворители

2.1. Масла растительные (Olea pinguia).

Наиболее широко используются масла персиковое, оливковое, касторовое.

Масло для инъекций должно быть рафинированным, дезодорированным, иметь кислотное число менее 2,5, перекисное менее 10,0 (табл. 25.1).

К недостаткам масляных растворов следует отнести их высокую вязкость, болезненность инъекций, трудное рассасывание масла и возможность образования гранулем в месте введения.

Для уменьшения вязкости в некоторых случаях добавляют этиловый или этилптиколевый эфир.

Растворимость некоторых веществ в маслах увеличивают путем добавления сорастворителей (спирт бензиловый, бензилбензоат и др.). В РФ растительные масла применяются для приготовления инъекционных растворов камфоры, дезоксикортикостерона ацетата, диэтилстильбэстрола пропионата, ретинола ацетата, синэстрола (см. табл. 25.1).

Таблица 25.1. Примеры использования масел растительных в инъекционных растворах

2.2. Этилолеат (Ethylii oleas) - сложный эфир ненасыщенных жирных кислот с этанолом:

СН 3 - (СН 2) 3 - СН = СН - (СН 2)7 - СО - О - С 2 Н 5 .

В сравнении с маслами обладает большей растворяющей способностью, меньшей вязкостью, имеет постоянный химический состав, легко проникает в ткани, хорошо рассасывается, сохраняет однородность при пониженной температуре. В этилолеате хорошо растворяются витамины, гормональные вещества.

2.3. Этанол (С 2 Н 5 ОН) (Spiritus aethylicus). Применяют для улучшения растворимости труднорастворимых в воде соединений и используют как антисептик и сорастворитель при изготовлении растворов сердечных гликозидов: конваллятоксина, строфантина К. Применяют для улучшения растворимости веществ путем их растворения в этаноле, смешения с маслом с последующей отгонкой (онкопрепараты).

2.4. Глицерин улучшает растворимость в воде сердечных гликози- дов. В составе трехкомпонентной системы «вода-этанол-глицерин» он используется для получения раствора целанида и лантозида. В качестве сорастворителя глицерин используют при изготовлении инъекционных растворов мезатона, фетанола, дибазола и др.

2.5. Спирт бензиловый (С 6 Н 5 - СН 2 ОН) (Spiritus benzylicus) используется в качестве сорастворителя в концентрации 1-10% при изготовлении масляных растворов.

2.6. Пропиленгликоль (СН 2 - СНОН - СН 2 ОН) (Propylenglycolum) является хорошим растворителем для сульфаниламидов, барбитуратов, антибиотиков, витаминов А и D, оснований алкалоидов и других лекарственных веществ.

2.7. Бензилбензоат (Benzylii benzoas) - бензиловый эфир бензойной кислоты. Бензилбензоат значительно увеличивает растворимость в маслах некоторых труднорастворимых веществ, главным образом стероидных гормонов. Кроме того, бензилбензоат предотвращает кристаллизацию веществ из масел в процессе хранения.

2.8. Смешанные растворители (сорастворители) обладают большей растворяющей способностью, чем каждый растворитель в отдельности. В настоящее время сорастворители широко используют для получения инъекционных растворов веществ, труднорастворимых в индивидуальных растворителях (гормонов, витаминов, антибиотиков, барбитуратов и др.) (табл.25.2).

Таблица 25.2. Инъекционные растворы, содержащие в составе сораство- ритель

Наименование ЛС

Применяемый сорастворитель

Кармустин

Спирт 10%

Хлордиазепоксид

Пропиленгликоль 20%

Циклоспорин

Спирт 33%

Диазепам

Дигоксин

Пропиленгликоль 40%, спирт 10%

Этомидат

Пропиленгликоль 35%

Кеторлак

Спирт 10%

Лоразепам

ПЭГ-400 18%, пропиленгликоль 82%

Мультивитамины

Пропиленгликоль 30%

Нитроглицерин

Пропиленгликоль 0,5%, спирт 70%

Фенобарбитал натрия

Пропиленгликоль 40%, спирт 10%

Секобарбитал натрия

Пропиленгликоль 50%

Тенопсид

Спирт 42,7%, ДМА 6%

Триетоприм сульфат

Пропиленгликоль 40%, спирт 10%

Б. Лекарственные средства

Лекарственные средства (субстанции), используемые для изготовления инъекционных растворов, должны отвечать требованиям ГФ, ФС, ВФС. Некоторые вещества подвергают дополнительной очистке и выпускают повышенной чистоты, квалификации «годен для инъекций» (глюкоза, желатин, пенициллин и др.).

В частности, в глюкозе и желатине (благоприятные среды для размножения микроорганизмов) могут содержаться пирогенные вещества. Поэтому для них определяют тест-дозу на пирогенность в соответствии со статьей ГФ «Проверка пирогенности». Глюкоза не должна давать пирогенный эффект при внутривенном введении 5% раствора из расчета 10 мг/кг массы кролика, желатин - 10% раствора. Бензилпенициллина калиевую соль также проверяют на пирогенность (тест-доза не должна превышать 5000 ЕД в 1 мл воды на 1 кг массы кролика) и испытывают на токсичность.

Пригодность некоторых лекарственных веществ для инъекционных растворов определяют на основании дополнительных иссле- дований на чистоту. Кальция хлорид проверяют на растворимость в этаноле (органические примеси) и содержание железа; гексаметилентетраамин - на отсутствие аминов, солей аммония и хлороформа; кофеин-бензоата натрия - на отсутствие органических примесей (раствор не должен мутнеть или выделять осадок при нагревании в течение 30 мин). Магния сульфат для инъекций не должен содержать марганца и других веществ, что отмечено в нормативной документации.

Натрия гидрокарбонат квалификации х.ч., ч.д.а., «годен для инъекций», отвечающий требованиям ГОСТа 4201, должен выдерживать дополнительное требование на прозрачность и бесцветность 5% рас- твора. Ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет появляться опалесценция карбонатов этих катионов.

Эуфиллин для инъекций должен содержать повышенное количество этилендиамина (18-22%) как стабилизатор этого вещества вместо 14-18% при использовании его для пероральных растворов и выдерживать дополнительное испытание на растворимость.

Натрия хлорид (х.ч.), выпускаемый по ГОСТу 4233, должен соответствовать требованиям ГФ, калия хлорид (х.ч.) должен отвечать требованиям ГОСТа 4234 и ГФ. Натрия ацетат квалификации ч.д.а. должен отвечать требованиям ГОСТа 199.

Натрия бензоат не должен содержать более 0,0075% железа.

Тиамина бромид для инъекций должен выдерживать дополнительное испытание на прозрачность и бесцветность раствора.

Лекарственные вещества, используемые для приготовления инъекционных растворов, хранят в отдельном шкафу, в стерильных небольших штангласах, закрытых притертыми пробками. Штангласы

перед каждым заполнением лекарственными веществами моют и стерилизуют в соответствии с приказом Минздрава. В. Вспомогательные вещества

При изготовлении лекарственных средств для парентерального применения могут быть добавлены консерванты, антиоксиданты, стабилизаторы, эмульгаторы, солюбилизаторы и другие вспомогательные вещества, указанные в частных статьях.

В качестве вспомогательных веществ - ингибиторов физикохимических процессов, препятствующих гидролизу и окислению лекарственных средств, используют: аскорбиновую, хлористо-водородную, винную, лимонную, уксусную кислоты, натрия карбонат, натрия бикарбонат, натр едкий, натрия или калия сульфит, бисульфит или метабисульфит, натрия тиосульфат, натрия цитрат, натрия фосфат одно- и двузамещенный, натрия хлорид, метиловый эфир оксибензойной кислоты, пропиловый эфир оксибензойной кислоты, ронгалит, динатриевую соль этилендиаминтетрауксусной кислоты, спирт поливиниловый, хлоробутанол, крезол, фенол и др.

Количество добавляемых вспомогательных веществ, если нет других указаний в частных статьях, не должно превышать следующих концентраций: для веществ, подобных хлорбутанолу, крезолу, фенолу, - до 0,5%; для сернистого ангидрида или эквивалентных количеств сульфита, бисульфита или метабисульфита калия или натрия - до 0,2%.

Консерванты (табл. 25.3) применяют в многодозовых лекарственных средствах для парентерального применения, а также в однодозовых препаратах в соответствии с требованиями частных статей.

Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов.

Правило 1

Приказ? 214 требует указания концентрации и объема (или массы) изотонирующих и стабилизирующих веществ, добавленных в растворы для инъекций и инфузий, не только в паспортах, но и на рецептах.

Г. Тара и упаковка

Растворы для инъекций упаковывают во флаконы, укупоривают пробками и закатывают колпачками.

Таблица 25.3. Вспомогательные вещества и их концентрация в растворах для инъекций

Сосуды и укупорочные средства должны обеспечивать герметичность, быть индифферентными к содержимому, сохранять его стабильность при стерилизации, хранении и транспортировании. Марки стекла и других укупорочных средств (резины, пластмассы) должны быть указаны в частных статьях. Сосуды изготавливают из материалов, не затрудняющих визуальный контроль содержимого.

Рис. 25.9. Бутылка для крови, трансфузионных и инфузионных препаратов, ГОСТ 10782

Бутылки для инфузионных растворов и кровезаменителей с гладким горлом (рис. 25.9) изготавливаются из медицинского стекла марки МТО. Они предназначены для расфасовки и хранения крови, кровезаменителей, инфузионных и трансфузионных растворов. Емкость - 100, 250 и 450 мл. Внутренняя поверхность бутылок обработана для обеспечения химической стойкости. Бутылки с внутренним химически стойким покрытием нельзя использовать повторно после хранения в них препаратов в течение гарантийного срока годности. Гарантийный срок хранения - 1 год с даты изготовления.

В настоящее время широко применяются бутылки из полиэтилена или полипропилена (рис. 25.10). Преимуществом данной тары явля- ется совместимость с любыми растворами и возможность стерилизации паром в стандартных условиях.

Бутылки укупоривают пробками резиновыми для бутылок с кровью, кровезаменителями и инфузионными растворами (рис. 25.11). Материал пробки должен быть достаточно прочным и эластичным, чтобы обеспечивать отбор содержимого без удаления пробки, отделения ее частиц и герметизацию сосуда после удаления иглы.

Рис. 25.10. Бутылки из полиэтилена высокого давления для инфузионных препаратов

Для фиксации пробки на нее и горло бутылки устанавливают алюминиевый колпачок (рис. 25.12), который завальцовывают. Одновременно с обеспечением плотной укупорки достигается контроль вскрытия инъекционных растворов. Колпачки изготовлены из алюминиевой фольги толщиной 0,2 мм. В процессе производства обязательно осуществляют обезжиривание после штамповки, химическую обработку и 100% выходной контроль.

25.3. ВЗАИМНАЯ НЕСОВМЕСТИ МОСТЬ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Рис. 25.11. Пробки резиновые 4Ц для укупоривания бутылок с кровью, кровезаменителями и инфузионными растворами

Несовместимость - явление утраты качественных и количественных характеристик препарата в результате взаимодействия с другим препаратом или вспомогательными веществами.

По современным данным, за время одной госпитализации больной получает в среднем 8-14 различных препаратов, большинство из которых многокомпонентные. При этом весьма вероятны реакции взаимодействия препаратов друг с другом, происходящие при смешивании в одном шприце или в организме больного. По данным печати, более 20% лекарственных осложнений связаны с взаимодействием препаратов в процессе политерапии.

Работник аптечного или лечебно-профилактического учреждения обязан своевременно выявлять несовместимые сочетания лекарственных средств. Если факт несовместимости неизвестен, фармацевт обязан предвидеть и предотвращать данные явления. Для того чтобы предвидеть несовместимые сочетания, фармацевт должен знать фармацевтическую химию, чтобы прогнозировать возможные реакции.

Рис. 25.12. Колпачки алюминиевые

Наиболее часто происходят реакции гидролиза (эфиров, амидов, лактамов) и окисления (катехинов, фенолов, непредельных соединений), осаждение слабых электролитов или нейтральных, гидрофобных оснований в результате изменения рН концентрации сорастворителей, ПАВ.

Образование осадка при изменении рН определяет стабильность растворов практически всех лекарственных веществ. Например, раствор пенициллина содержит буферный раствор калиевой соли лимонной кислоты в области рН 6,5. Раствор стабилен в течение 24 ч при таком рН; однако при смешивании с раствором препарата кислотного характера рН изменяется, пенициллин теряет активность в течение 1 ч.

Правило 2

Растворы для внутривенных вливаний не рекомендуются смешивать с лекарственными препаратами. Категорически запрещается смешивание любых препаратов со следующими внутривенными растворами:

Плазмозаменители;

Гидролизаты белка;

Растворы аминокислот;

Кровь, плазма и другие препараты крови;

Гидрокарбонат натрия;

Жировая эмульсия.

Эти вливания непостоянны по своей природе, и введение препаратов может вызвать неблагоприятные реакции коагуляции, гидро- лиза с образованием потенциально опасных продуктов.

При смешивании фармацевт должен помнить, что растворимость слабой кислоты или основания зависит от рН: амины (дофамин, адреналин, морфин) являются основаниями и растворимы в кислой среде, тогда как карбоксильные и другие кислоты (пенициллины, цефалоспорины, 5-фтороурацил) растворимы в щелочной среде. Смешивание в одном флаконе веществ, обладающих свойствами кислоты и основания, всегда приводит к реакции взаимодействия.

Правило 3

Запрещается смешивать в одном флаконе лекарственные средства с различающимся рКа.

Возможно образование осадка в результате снижения концентрации сорастворителей или ПАВ.

Особое внимание фармацевт должен уделять совместимости растворов неэлектролитов (типа дигоксина, фенитоина и бензодиазепина), которые возможны только в неводном растворителе. Если к раствору препарата добавить водный раствор другого препарата, произойдет осаждение крайне токсичных соединений.

Большое внимание необходимо уделять возможной адсорбции препарата. В частности, растворы неполярных веществ, особенно низ- кой концентрации, способны адсорбироваться полярными стенками поливинилхлоридных сосудов или систем для переливания крови.

Классический пример - нитроглицерин. Нитроглицерин плохо растворяется в воде - менее 0,1%. Если водный раствор нитроглицерина поместить в ПВХ-мешок, то потери вещества будут зна- чительными в результате сорбции препарата поливинилхлоридом. Это явление наблюдается для растворов витамина А (ретинола ацетат), варфарина, метгекситала, тербуталина, лоразепама и инсулина. Оптимальным материалом для изготовления флаконов, в которые будут помещены данные препараты, является стекло.

Следует учитывать и взаимодействие лекарственных средств с антиокислителями. Некоторые инъекционные растворы содержат в составе антиокислителя натрия сульфид. Фармацевту нужно помнить, что сульфиды реагируют с другими лекарствами, например со фторурацилом, тиамина хлоридом.

Фармацевту следует знать, что большинство одновалентных катионов совместимо. Однако двухвалентные катионы, подобно кальцию и магнию, могут осаждаться в присутствии бикарбоната, солей лимонной кислоты и фосфата. Кальций образует комплексы с тетрациклинами, приводящие к его инактивации.

25.4. СТАБИЛИЗАЦИЯ ИНЪЕКЦИОННЫХ РАСТВОРОВ

Стабильность - свойство препарата сохранять качественные и количественные характеристики при хранении в течение срока годности и при введении в организм больного.

Существует 3 фактора, определяющие стабильность инъекционных растворов:

1. Химическая стабильность - способность лекарственного препарата противостоять 4 реакциям разрушения:

Гидролизу;

Окислению;

Фотолизису;

Другим, например рацемизации.

2. Физическая стабильность - способность сохранить физические характеристики, включая цвет, прозрачность, растворимость.

3. Микробиологическая стабильность - способность поддерживать стерильность или определенный ее уровень.

Утрата стабильности происходит из-за воздействия неблагоприятных факторов окружающей среды и зависит от:

Физико-химических свойств лекарственных веществ;

Значения рН раствора;

Присутствия ионов тяжелых металлов, попадающих в раствор из лекарственных веществ, воды или стекла;

Кислорода, содержащегося в воде и в воздухе над раствором;

Температуры (в том числе при стерилизации).

По сравнению с другими изготовляемыми в аптеках лекарственными формами (растворы для внутреннего и наружного применения, порошки, мази и т.д.), для которых лишь на отдельные препараты имеются частные статьи в ГФ Х, ФС, ВФС, составы всех растворов для инъекций, а также способы обеспечения их стерильности и стабильности регламентированы. Поэтому обязательным до приготовления раствора для инъекций является ознакомление с вышеуказанной документацией.

Правило 4

Изготавливать растворы для инъекций без имеющихся утвержденных указаний о составе, технологии приготовления и стерилизации запрещено.

Технология стабилизации растворов для инъекций

Выбор стабилизатора в первую очередь зависит от химической природы веществ, которые ориентировочно можно разделить на 3 группы:

1. Растворы солей слабых оснований и сильных кислот.

2. Растворы солей сильных оснований и слабых кислот.

3. Растворы легкоокисляющихся веществ.

25.4.1. Стабилизация растворов солей слабых оснований и сильных кислот (растворы солей алкалоидов и синтетических азотистых оснований)

Для стабилизации растворов этих веществ рекомендуется снижение рН раствора.

Увеличение рН раствора приводит к следующим взаимодействиям:

- осаждению оснований из солей стрихнина нитрата, папаверина гидрохлорида, дибазола, новокаина, констатируемому по замасливанию стенок сосуда;

- изменению окраски растворов вследствие их разрушения, так как соли всегда стабильнее основания; например, раствор мор- фина желтеет, апоморфина - зеленеет, адреналина - розовеет, дротаверина - темнеет.

Прибавление к этим растворам свободной кислоты, т.е. избытка ионов ОН+ з, понижает степень диссоциации воды и подавляет гидролиз, вызывая сдвиг равновесия влево:

Alc HCl + Н 2 О = А1с + ОН 3 + + Cl - ; HCl + Н 2 О = ОН 3 + + Cl - .

Уменьшение концентрации ионов ОН 3 + в растворе, например, вследствие щелочности стекла, сдвигает равновесие вправо. Нагревание раствора во время стерилизации, увеличивающее степень диссоциации воды и повышение рН раствора за счет выщелачивания стекла, вызывает в значительной степени усиление гидролиза соли, что приводит к накоплению в растворе труднорастворимого азотистого основания.

Правило 5

Растворы солей слабых оснований и сильных кислот стабилизируют добавлением 0,1 М раствора кислоты хлористоводородной.

Количество кислоты хлористо-водородной, необходимое для стабилизации раствора, зависит от свойств лекарственного вещества. Если нет указаний в ГФ или ФС, то добавляют 10 мл 0,1 М раствора кислоты хлористо-водородной на 1 л стабилизируемого раствора. Роль последней заключается в нейтрализации щелочи, выделяемой стеклом, и в смещении рН раствора в кислую сторону. Это создает условия, препятствующие гидролизу, омылению слож-

ных эфиров, окислению фенольных, альдегидных или лактонных групп. Пример 1

Раствор новокаина 1% (приказ МЗ РФ от 16.07.1997 г. ? 214).

Состав: новокаина 10,0; раствора кислоты хлористо-водородной 0,1 М до рН 3,8-4,5; воды для инъекций до 1 л.

Введение кислоты предотвращает омыление сложного эфира, сопровождающееся изменением фармакологического действия (образование анилина из новокаина).

25.4.2. Стабилизация растворов солей слабых кислот и сильных оснований

К солям слабых кислот и сильных оснований относятся: натрия тиосульфат, кофеин-бензоат натрия, теофиллин и др. В водных растворах соли слабых кислот и сильных оснований легко гидролизуются, образуя слабощелочную реакцию среды. Это приводит к образованию труднорастворимых соединений, дающих в растворах муть или осадок. Катализирует процесс кислая среда, которая может создаваться за счет растворения в воде углерода диоксида (рН воды для инъекций - 5,0-6,8).

Правило 6

Для стабилизации растворов солей слабых кислот и сильных оснований необходимо добавление 0,1 М раствора натрия гидро- ксида или натрия гидрокарбоната.

Пример 2

Раствор натрия нитрита, который по ГФ Х готовят с добавлением 2 мл 0,1 Мраствора натрия гидроксида на 1 л (рН 7,5-8,2). Получение стойкого раствора эуфиллина решается применением лекарственного вещества для инъекций с повышенным содержанием этилендиамина

(18-22% вместо 14-18%).

Правило 7

Вода для инъекций должна освобождаться от углерода диоксида путем кипячения.

25.4.3. Стабилизация растворов легкоокисляющихся веществ

К легкоокисляющимся веществам относятся: кислота аскорбиновая, адреналина гидротартрат, этилморфина гидрохлорид, вика- сол, новокаинамид, производные фенотиазина и другие лекарственные вещества, содержащие карбонильные, фенольные, этанольные, аминные группы с подвижными атомами водорода.

Для стабилизации используют:

1. Прямые антиоксиданты, сильные восстановители, обладающие более высокой способностью к окислению. Действие их основано на быстром окислении серы низкой валентности:

Na 2 SO 3 - натрия сульфит;

Na 2 S 2 0 3 - натрия метабисульфит;

NaHS0 3 - натрия сульфит кислый;

Тиомочевина;

Ронгалит (натрия формальдегидсульфоксилат);

Унитиол (2, 3-димеркаптопропансульфонат натрия).

2. Органические вещества, содержащие альдегидные, этанольные и фенольные группы:

Парааминофенол;

Кислота аскорбиновая и др.

Механизм действия антиоксидантов изложен в разделе «Вспомогательные вещества».

3. Антикатализаторы.

Влияние на процесс окисления лекарственных веществ оказывает присутствие следов тяжелых металлов (Fe 3 +, Cu+, Mn 2 + и др.), которые являются катализаторами процессов окисления. Установлено, что изменение цвета растворов салицилатов обусловлено окислением фенольного гидроксила в присутствии следов ионов марганца.

Ионы тяжелых металлов, участвуя в цепной окислительно-восстановительной реакции, способны отрывать электроны от при- сутствующих вместе с ними в растворах различных ионов, переводя последние в радикалы.

Для стабилизации легкоокисляющихся веществ используют комплексоны:

ЭДТА - этилендиаминтетрауксусная кислота;

Трилон Б - динатриевая соль этилендиаминтетрауксусной кислоты;

Тетацин-кальций;

Кальций-динатриевая соль этилендиаминтетрауксусной кислоты.

Общим свойством комплексонов является способность образовывать прочные внутрикомплексные водорастворимые соединения с большим числом катионов, в том числе и тяжелых металлов.

Важным средством стабилизации растворов является кипячение или дегазирование. В воде очищенной, обычно содержащей до 9 мг кислорода на 1 л, после кипячения количество кислорода снижается до 1,4 мг/л, после насыщения углерода диоксидом - до 0,2 мг/л.

Окисление лекарственных веществ может быть уменьшено также за счет устранения действия света, температуры. Иногда растворы некоторых лекарственных веществ (например, фенотиазина) готовят при красном свете, некоторые растворы хранят в упаковке из светозащитного стекла.

Пример 3

Комплексный подход к стабилизации лекарственных препаратов на примере 1% раствора апоморфина. Для получения устойчивого раствора апоморфина используют комплекс стабилизаторов, состоящий из анальгина, обрывающего цепи окисления путем связывания пероксидных радикалов, и цистерна - вещества, разрушающего гидропероксиды. Для устранения каталитического действия ионов гидроксила раствор готовят с добавлением кислоты хлористо-водородной. Заполнение флаконов или бутылок в токе инертного газа позволяет получить растворы, устойчивые при термической стерилизации и хранении в течение нескольких лет.

25.4.4. Примеры стабилизации растворов для инъекций

Пример 4

Стабилизация растворов глюкозы

Стабилизируют 0,1 М раствором кислоты хлористоводородной до рН 3,0-4,0. В условиях аптеки для удобства работы стабилизатор готовят по следующей прописи:

Rp.: Natrii chloridi 5,2

Ас. Hydrochloric dil. 4,4 ml

Воды для инъекций до 1000 ml

При изготовлении растворов глюкозы независимо от ее концентрации, добавляют 5% от объема этого стабилизатора.

Пример 5

Стабилизация растворов кислоты аскорбиновой

Применяют антиоксидант натрия метабисульфит в количестве 2,0 г на 1 л 5% раствора. С целью снижения болезненности инъекций к раст-

вору добавляют натрия гидрокарбонат в эквивалентных количествах. Наполняют флакон почти под пробку для уменьшения количества кислорода. Раствор готовят на свежепрокипяченной воде для инъекций.

Пример 6

Стабилизация растворов новокаина высокой концентрации Rp.: Novocaini 50,0 Natrii metabisulfitis 3,0 Ас. citrici 0,2

Ac. hydrochlorici 0,1 М 10 мл Aq. pro inject. ad 1000 ml рН раствора 3,8-4,5

Раствор стерилизуют при температуре 120+2 "С в течение 8 мин. Срок хранения растворов - до 30 дней.

Пример 7

Особенности приготовления растворов натрия гидрокарбоната Применяют сырье квалификации х.ч., ч.д.а., отвечающее требованиям ГОСТа 4201, также квалификации «годен для инъекций». Натрия гидрокарбонат должен выдерживать дополнительное требование на прозрачность и бесцветность 5% раствора. Ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет появляться опалесценция карбонатов этих катионов. Во избежание потери углерода диоксида, образующегося при гидролизе, растворение проводят при температуре не выше 20 "С в закрытом сосуде, избегая взбалтывания. Раствор стерилизуют при температуре 120+2 "С 8 мин (объем до 100 мл) и 12-15 мин (объем более 100 мл). Во избежание разрыва флаконов из-за выделения углерода диоксида разгрузку стерилизатора следует производить не ранее чем через 20-30 мин после того, как давление внутри стерилизационной камеры упадет до нуля.

25.5. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

Процесс изготовления состоит из следующих стадий:

1. Подготовительная, в том числе: проведение расчетов, подготовка условий асептического изготовления, мойка и стерилизация тары и упаковки, получение воды для инъекций.

2. Получение растворов для инъекций, в том числе операции: растворение, фильтрация, розлив, укупорка, проверка на отсутст-

вие механических включений, полный химический анализ, стерилизация.

3. Маркировка готовой продукции.

Типовая технологическая схема изготовления инъекционных растворов представлена на схеме 25.1. Технологический процесс изготовления разделяется на 3 потока:

Подготовка тары и упаковки;

Подготовка раствора;

Стерилизация, контроль качества, упаковка и маркировка готовой продукции.

Для получения растворов для инъекций и инфузий используют флаконы из нейтрального стекла марки НС-1 (для медицинских препаратов, антибиотиков) и НС-2 (сосуды для крови). В порядке исключения (после освобождения от щелочности) используют флаконы из стекла марки АБ-1 и МТО. Срок хранения растворов в них не должен превышать 2 сут.

При обработке флаконы из щелочного стекла заполняют водой очищенной, стерилизуют при температуре 120 ?С 30 мин. После обработки проводят контроль ее эффективности (потенциометрическим или ацидиметрическим методом). Изменение значения рН воды до и после стерилизации во флаконе не должно быть более 1,7.

Новую посуду снаружи и внутри обмывают водопроводной водой, замачивают на 20-25 мин в моющих растворах, подогретых до температуры 50-60 ?С. Используют также взвесь горчицы 1:20, 0,25% раствор «Дезмола», 0,5% растворы «Прогресса», «Лотоса», «Астры», 1% раствор СПМС (смесь сульфанола с натрия триполифосфатом 1:10). При сильном загрязнении посуду на 2-3 ч замачивают в 5% взвеси горчицы или растворе моющих средств в соответствии со специальной инструкцией.

Вымытую посуду стерилизуют горячим воздухом при температуре 180 ?С 60 мин. Посуду, бывшую в употреблении, дезинфицируют: 1% раствором активированного хлорамина - 30 мин; 3% свежеприготовленным раствором водорода пероксида с добавлением 0,5% моющих средств - 80 мин или 0,5% раствором «Дезмола» - 80 мин.

Для укупорки флаконов с инъекционными растворами используют пробки специальных сортов резины: ИР-21 (силиконовая); 25 П (натуральный каучук); 52-369, 52-369/1, 52-369/П (бутиловый каучук); ИР-119, ИР-119А (бутиловый каучук). Новые резиновые пробки

Схема 25.1. Типовая технологическая растворов

обрабатывают с целью удаления с их поверхности серы, цинка и других веществ в соответствии с инструкцией.

Пробки, бывшие в употреблении, промывают водой очищенной и кипятят в ней 2 раза по 20 мин, стерилизуют при температуре 121+2 ?С 45 мин.

Для изготовления растворов используют воду для инъекций (см. главу 21) и лекарственные средства квалификации «Для инъек- ций» или другие, если имеется указание в соответствующих ФС.

Фильтрование растворов для инъекций проводят через глубинные, чаще мембранные фильтры (см. главу «Асептика, стерилизация фильтрованием»).

В случае приготовления малых объемов инъекционных растворов применяют фильтр «Грибок» (рис. 25.13), представляющий собой воронку, обтянутую фильтровальным материалом, и работающий под разрежением. Фильтровальный пакет состоит из шелковой ткани в 2 слоя, фильтровальной бумаги в 3 слоя, марлевой прокладки и шелковой ткани в 2 слоя. Полностью заполненную воронку обвязывают сверху парашютным шелком. Фильтруют под вакуумом.

Профильтрованный раствор с помощью дозаторов разливают в подготовленные бутылки для инъекционных растворов. Закрывают пробками.

Флаконы с растворами для инъекций, укупоренные резиновыми пробками, контролируют на отсутствие механических включений. При обнаружении механических включений при первичном контроле раствора его перефильтровывают.

Рис. 25.13. Фильтр «Грибок»:

1 - воронка, обтянутся слоем фильтровальных материалов; 2 - линия подачи растворов; 3 - стакан с фильтруемым раствором; 4 - вакуум; 5 - приемник с профильтрованным раствором; 6 - ловушка на вакуумной линии

После изготовления растворы для инъекций подвергают химическому анализу, заключающемуся в определении подлинности (качественный анализ) и количественного содержания лекарственных веществ, входящих в состав лекарственной формы (количественный анализ). Количественному и качественному анализам провизоры-аналитики подвергают первично все серии инъекционных растворов, которые готовят в аптеке (до стерилизации). В аптеках, где нет провизора-аналитика, количественному анализу подвергают растворы атропина сульфата, новокаина, глюкозы, кальция хлорида и изотонический раствор натрия хлорида. Контроль путем опроса провизора-технолога проводят немедленно после изготовления инъекционного раствора. При положительном результате обкатывают металлическими колпачками.

Закатанные бутылки с растворами для инъекций маркируют по алюминиевому колпачку, указывая наименование, номер серии.

Маркированные флаконы помещают в автоклав и стерилизуют в соответствии с указаниями ГФ, учитывая объем раствора в сосуде. После стерилизации растворы анализируют на содержание механических включений в соответствии с приказом? 308. Забракованные флаконы переработке не подлежат.

Отбракованные флаконы направляют на полный анализ в соответствии с требованиями ГФ или ФС.

Отбирают пробу на анализ стерильности и отсутствие пирогенных веществ. В случае положительного результата маркируют и упаковывают в гофрокоробки.

25.6. КОНТРОЛЬ РАСТВОРОВ НА ОТСУТСТВИЕ МЕХАНИЧЕСКИХ ВКЛЮЧЕНИЙ

В процессе изготовления растворы подвергаются первичному и вторичному контролю.

Первичный контроль осуществляется после фильтрования и фасовки раствора. При этом просматривается каждая бутылка или флакон с раствором. При обнаружении механических включений раствор повторно фильтруют, вновь просматривают, укупоривают, маркируют и стерилизуют. Растворы, изготовленные асептически, просматривают 1 раз после розлива или стерилизующего фильтрования.

Вторичному контролю подлежат также 100% бутылок и флаконов с растворами, прошедших стадию стерилизации перед их оформлением

Рис. 25.14. Устройство для контроля растворов на механические включения

и упаковкой. Для просмотра бутылок используют «Устройство для контроля растворов на отсутствие механических загрязнений» (УК-2) (рис. 25.14) и др. Контроль растворов осуществляется путем их просмотра невооруженным глазом на черном и белом фоне, освещенном электрической матовой лампой в 60 ватт или лампой дневного света 20 ватт, для окрашенных растворов - соответственно в 100 и 30 ватт. Расстояние от глаза до просматриваемого объекта должно быть 25-30 см, а угол оптической оси просмотра к направлению света - около 90 ?. Линия зрения должна быть направлена книзу при вертикальном положении головы.

В зависимости от объема бутылки или флакона просматривают одновременно от 1 до5 штук. Бутылки или флаконы берут в одну или обе руки за горловины, вносят в зону контроля, плавным движением перевора- чивают в положение вверх донышками и просматривают на черном и белом фоне. Затем плавным движением, без встряхивания переворачивают в первоначальное положение вниз донышками и также просматривают.

Время контроля соответственно составляет: 1 бутылки (флакона) вместимостью 100-500 мл - до 20 с, 2 бутылок (флаконов) вмести-

мостью 50-100 мл - 10 с, от 2 до 5 бутылок (флаконов) вместимостью 5- 50 мл - 8-10 с. Визуальным осмотром могут быть идентифицированы частицы размером более 50 мкм.

Фармакопеей США USP 24/NF19 установлен инструментальный контроль за содержанием механических частиц в инъекционных растворах: не более 12 частиц/мл - размером более 10 микрон и не более 2 частиц/мл - размером более 25 микрон (рис. 25.15).

Рис. 25.15. Примеси, отфильтрованные из инфузионного раствора (увеличено 1 . 700)

25.7. ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ИНЪЕКЦИОННЫМ ЛЕКАРСТВЕННЫМ ФОРМАМ

Растворы для инъекций должны быть прозрачными по сравнению с водой для инъекций. Объем инъекционных растворов в сосудах должен быть больше номинального (табл. 25.5).

Таблица 25.5. Объем инъекционных растворов в сосудах

Номинальный объем, мл

Объем заполнения, мл

Количество сосудов для контроля запол- нения, шт.

невязкие растворы

вязкие растворы

1,10

1,15

2,15

2,25

5,30

5,50

10,0

10,50

10,70

20,0

20,60

20,90

50,0

5l,0

51,50

Более 50

На 2 мл более номинального

На 3% более номинального

Растворы для инъекций должны быть стерильными, не иметь видимых механических включений.

Растворы для инъекций должны быть нетоксичными согласно требованиям и тест-дозам, указанным в частных статьях.

Растворы для инъекций должны быть апирогенными согласно требованиям и тест-дозам, указанным в частных статьях.

Испытанию подлежат все лекарственные средства для парентерального применения при объеме одноразовой дозы 10 мл и более, а также при меньшей дозе, если есть указание в частной статье.

Растворы для инъекций должны выдерживать испытание на отсутствие механических включений.

Отклонение массы содержимого одного сосуда от средней массы не должно превышать нормативов ГФ.

25.8. МАРКИРОВКА РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

На всех этикетках для оформления лекарственных препаратов, приготовляемых для лечебно-профилактических учреждений, должны быть следующие обозначения:

Местонахождение аптечного учреждения (предприятия)...;

Наименование аптечного учреждения (предприятия)...;

Больница?...;

Отделение... ;

Дата (приготовления)... ;

Срок годности... дней;

Приготовил... проверил... отпустил... ;

Анализ?... ;

Подробный способ применения: «Внутривенно», «Внутривенно (капельно)», «Внутримышечно» («Для инъекций»);

Состав лекарственного препарата (предусматривается пустое место для указания состава).

25.9. ХРАНЕНИЕ РАСТВОРОВ ДЛЯ ИНЪЕКЦИЙ

Лекарственные формы для инъекций следует хранить в прохладном, защищенном от света месте, в отдельном шкафу или изолированном помещении и с учетом особенности тары (хрупкость), если нет других указаний на упаковке.

Плазмозамещающие и дезинтоксикационные растворы хранят изолированно при температуре в пределах от 0 до 40 ?С в защищенном от света месте. В некоторых случаях допускается замерзание раствора, если это не отражается на качестве препарата (приказ MЗ РФ? 377).

Контрольные вопросы

1. Какой процент в рецептуре аптек составляют растворы для инъекций?

2. Какие дисперсионные среды используют для инъекционных лекарственных форм?

3. Каковы условия получения воды для инъекций в аптеках?

4. Какие аквадистилляторы используются для получения воды для инъекций?

5. Цель использования сепарирующего устройства. Его разновидности.

6. Какие неводные и комплексные растворители используются для инъекционных растворов? Их номенклатура.

7. Каковы требования, предъявляемые к лекарственным веществам для

инъекционных растворов?

8. Чем обусловлена стабилизация растворов для инъекций?

9. Каков принцип стабилизации растворов солей слабых оснований и сильных кислот? Приведите примеры.

10. Каков принцип стабилизации растворов солей слабых кислот и сильных оснований? Приведите примеры.

11. Как используется перекисная теория окисления академика Н.Н. Семенова при стабилизации инъекционных растворов?

12. Каков основной механизм действия антиоксидантов?

13. Каков механизм стабилизирующего действия ПАВ?

14. В чем заключается отличие стабилизации растворов новокаина низких и высоких концентраций?

15. Какова технология изготовления стабильного раствора глюкозы?

16. Какие факторы и технологические приемы способствуют стабилизации инъекционных растворов?

17. Чем объяснить необходимость тщательного фильтрования растворов для инъекций и контроля их чистоты?

18. Какова взаимосвязь между использованием средств малой механизации и требованиями, предъявляемыми к растворам для инъекций при их фильтровании?

Тесты

1. Инъекционные растворы относятся к инфузионным, если их объем более:

1. 10 мл.

2. 50 мл.

3. 100 мл.

2. Для замедления (пролонгирования) действия препарата применяют его:

1. Спиртовые растворы.

2. Водные растворы.

3. Масляные растворы или эмульсии.

3. В качестве растворителей не применяют:

1. Воду для инъекций.

2. Воду очищенную.

3. Жирные масла.

4. Этилолеат.

4. В качестве комплексного растворителя может быть использовано все, кроме:

1. Этанола.

2. Глицерина.

3. Метанола.

4. Пропиленгликоля.

5. ПЭО-400.

5. Предотвращает кристаллизацию веществ из масел в процессе хранения:

1. Глицерин.

2. Этанол.

3. Пропиленгликоль.

4. Бензилбензоат.

6. Лекарственные вещества, используемые для приготовления инъекционных растворов, хранят:

1. В штангласах.

2. Стерильных небольших штангласах.

3. В стерильных больших штангласах.

7. Эуфиллин для инъекций должен содержать повышенное количество:

1. Этилендиамина (18-22%).

2. Этилендиамина (14-18%).

3. Теофиллина.

8. Лекарственные средства для внутриполостных, внутрисердечных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, должны содержать:

1. Количество консервантов не более 0,5%.

2. Количество консервантов не более 0,2%.

3. Не должны содержать консервантов.

9. Разрешается смешивание лекарственных препаратов в одном флаконе со следующими внутривенными растворами:

1. Плазмозаменителями.

2. Гидролизатами белка.

3. Растворами аминокислот.

4. Кровью, плазмой и другими препаратами крови.

5. Бикарбонатом натрия.

6. Натрия хлоридом.

7. Жировой эмульсией.

10. Смешивание в одном флаконе веществ, обладающих свойствами кислоты и основания, приводит к реакции взаимодействия:

1. Всегда.

2. Иногда.

3. Никогда.

11. По сравнению с другими изготовляемыми в аптеках лекарственными формами (растворы для внутреннего и наружного применения, порошки, мази и т.д.), для которых лишь на отдельные препараты имеются частные

статьи в ГФ Х, ФС, ВФС, составы всех растворов для инъекций, а также способы обеспечения их стерильности и стабильности:

1. Не регламентированы.

2. Регламентированы.

12. Увеличение рН раствора приводит к:

1. Осаждению оснований из солей.

2. Растворению солей.

13. Растворы солей слабых оснований и сильных кислот стабилизируют добавлением:

1. 0,1 М раствора кислоты хлористо-водородной.

2. 0,1 М раствора натрия гидрокарбоната.

3. 0,1 М раствора пероксида водорода.

14. Прямые антиоксиданты - это:

1. Na 2 S 2 0 3 - натрия метабисульфит.

2. Тетацин-кальций.

3. Кальций-динатриевая соль этилендиаминтетрауксусной кислоты.

15. На флаконах с какими растворами при оформлении их к стерилизации делают пометку о времени изготовления - с учетом того, что интервал времени от изготовления этих растворов до начала стерилизации регламентируется?

1. С антибиотиками.

2. Для офтальмологии.

3. Для инъекций.

4. Для новорожденных.

16. Интервал времени от начала изготовления инъекционных и инфузионных растворов до начала стерилизации не должен превышать:

1. 1,5 ч.

2. 2 ч.

3. 3 ч.

4. 6 ч.

5. 12 ч.

17. Объем инъекционных растворов в сосудах должен быть:

1. Больше номинального.

2. Меньше номинального.

3. Равен номинальному.

В соответствии с указаниями ГФХ, в качестве растворителей для приготовления инъекционных растворов применяют воду для инъекций, персиковое и миндальное масла. Вода для инъекций должна отвечать требованиям статьи № 74 ГФХ. Персиковое и миндальное масла должны быть стерильными, а их кислотное число не превышать 2,5.

Инъекционные растворы должны быть прозрачными. Проверку производят при просмотре в свете рефлекторной лампы и обязательном встряхивании сосуда с раствором. Испытание растворов для инъекций на отсутствие механических загрязнений осуществляют согласно специальной инструкции, утвержденной Министерством здравоохранения СССР.

Инъекционные растворы готовят массо-объемным способом: лекарственное вещество берут по массе (весу), растворитель - до требуемого объема.

Количественное определение лекарственных веществ в растворах производят согласно указаниям в соответствующих статьях. Допустимое отклонение содержания лекарственного вещества в растворе не должно превышать ±5% от указанного на этикетке, если в соответствующей статье нет другого указания.

Исходные лекарственные препараты должны удовлетворять требования ГФХ. Кальция хлорид, кофеин-бензоат натрия, гексаметилентетрамин, натрия цитрат, а также магния сульфат, глюкоза, кальция глюконат и некоторые другие должны употребляться в виде сорта «для инъекций», обладающего повышенной степенью чистоты.

Во избежание загрязнения пылью, а вместе с ней и микрофлорой препараты, употребляемые для приготовления инъекционных растворов и асептических лекарств", хранят в отдельном шкафу в небольших банках, закрытых притертыми стеклянными пробками, защищенными от пыли стеклянными колпачками. При наполнении этих сосудов новыми порциями препаратов банка, пробка, колпачок должны каждый раз подвергать тщательному мытью и стерилизации.

В связи с весьма ответственным способом применения и большой опасностью ошибок, которые могут быть допущены во время работы, приготовление инъекционных растворов нуждается в строгой регламентации и неукоснительном соблюдении технологии.

Не допускается одновременное приготовление нескольких инъекционных лекарств, содержащих различные ингредиенты или одинаковые ингредиенты, но в различных концентрациях, а также одновременное приготовление инъекционного и какого-либо другого лекарства.

На рабочем месте при изготовлении инъекционных лекарств не должно находиться никаких штангласов с лекарственными препаратами, не имеющими отношения к приготовляемому лекарству.

В аптечных условиях особое значение приобретает чистота посуды для приготовления инъекционных лекарств. Для мойки посуды применяют разведенный в воде в виде взвеси 1:20 порошок горчицы, а также свежеприготовленный раствор перекиси водорода 0,5-1% с добавлением 0,5-1% моющих средств («Новость», «Прогресс», «Сульфанол» и другие синтетические моющие средства) или смесь 0,8-1% раствора моющего средства «Сульфанол» и тринатрийфосфата в соотношении 1:9.

Посуду вначале замачивают в моющем растворе, нагретом до 50-60 °С, в течение 20-30 мин, а сильно загрязненную - до 2 ч и более, после чего тщательно моют и ополаскивают сначала несколько (4-5) раз водопроводной водой, а затем 2-3 раза дистиллированной водой. После этого посуду стерилизиуют в соответствии с указаниями ГФХ (статья «Стерилизация»).

Ядовитые вещества, необходимые для приготовления инъекционных лекарств, взвешиваются рецептаром-контролером в присутствии ассистента и немедленно используются последним для приготовления лекарства. Получая ядовитое вещество, ассистент обязан убедиться в соответствии наименования штан-гласа назначению в рецепте, а также в правильности набора гирь и взвешивания.

На все без исключения инъекционные лекарства, приготовленные ассистентом, последний обязан немедленно составить контрольный паспорт (талон) с точным указанием названий взятых ингредиентов лекарства, их количеств и личной подписью.

Все инъекционные лекарства до стерилизации должны подвергаться химическому контролю на подлинность, а при наличии химика-аналитика в аптеке - и количественному анализу. Растворы новокаина, атропина сульфата, кальция хлорида, глюкозы и изотонический раствор натрия хлорида при любых обстоятельствах в обязательном порядке подлежат качественному (идентификация) и количественному анализу.

Во всех случаях инъекционные лекарства должны приготавливаться в условиях максимально ограниченного загрязнения лекарства микрофлорой (асептические условия). Соблюдение этого условия обязательно для всех инъекционных лекарств, в том числе проходящих заключительную стерилизацию.

Правильная организация работы по приготовлению инъекционных лекарств предполагает заблаговременное обеспечение ассистентов достаточным набором простерилизованной посуды, вспомогательных материалов, растворителей, мазевых основ и т. п.

№ 131. Rp.: Sol. Calcii chloridi 10% 50,0 Sterilisetur! DS. Внутривенная инъекция

Для приготовления инъекционного раствора необходима простерилизованная посуда: отпускная склянка с пробкой, мерная колба, воронка с фильтром, часовое стекло или кусок стерильного пергамента в качестве крыши для воронки. Для приготовления раствора кальция хлорида для инъекций необходима также стерилизованная градуированная пипетка с грушей для отмеривания концентрированного раствора кальция хлорида (50%). Перед приготовлением раствора многократно промывают стерильной водой фильтр; фильтрованной водой промывают и ополаскивают отпускную склянку и пробку.

Отмеривают (или отвешивают) необходимое количество лекарственного вещества, смывают его в мерную колбу, добавляют небольшое количество стерильной воды, доводя затем объем раствора до метки. Приготовленный раствор фильтруют в отпускную склянку. Сосуд с раствором и воронку во время фильтрования закрывают часовым стеклом или стерильным пергаментом. Осматривают раствор на отсутствие механических примесей.

После укупорки склянки с инъекционным раствором плотно обвязывают пробку влажным пергаментом, надписывают на обвязке состав и концентрацию раствора, ставят личную подпись и стерилизуют раствор при 120 °С в течение 20 мин.

№ 132. Rp.: Sol. Glucosi 25% 200,0 Sterilisetur! DS.

Для стабилизации указанного раствора используют заранее приготовленный раствор стабилизатора Вейбеля (см. с. 300), которого добавляют к инъекционному раствору в количестве 5% независимо от концентрации глюкозы. Стабилизированный раствор глюкозы стерилизуют текущим паром в течение 60 мин.

При изготовлении инъекционных растворов глюкозы следует учитывать, что последняя содержит 1 молекулу кристаллизационной воды, поэтому глюкозы следует взять соответственно больше, используя следующее уравнение ГФХ:

где а - прописанное в рецепте количество препарата; б - содержание влаги в глюкозе, имеющейся в аптеке; х - требуемое количество глюкозы, имеющейся в аптеке.

Если анализ на влажность показывает содержание влаги в порошке глюкозы, равное 9,6%, то препарата следует взять:

а на 200 мл раствора - 55 г.

№ 133. Rp.: Sol. Cofieini-natrii benzoatis 10% 50,0 Sterilisetur! DS. По 1 мл под кожу 2 раза в день

В рецепте № 133 приведен пример раствора вещества, являющегося солью сильного основания и слабой кислоты. По указанию ГФХ (статья № 174), руководствуясь прописью для ампу-лированного раствора кофеин-бензоата натрия, используют в качестве стабилизатора 0,1 н. раствор едкого натра из расчета 4 мл на 1 л раствора. В данном случае добавляют 0,2 мл раствора едкого натра (рН 6,8-8,0). Раствор стерилизуют текучим паром в течение 30 мин.

№ 134. Rp.: 01. Camphorati 20% 100,0 Sterilisetur! DS. По 2 мл под кожу

Рецепт № 134 - пример инъекционного раствора, в котором в качестве растворителя использовано масло. Камфору растворяют в большей части теплого (40-45 °С) стерилизованного персикового (абрикосового или миндального) масла. Полученный раствор фильтруют через сухой фильтр в сухую мерную колбу и доводят маслом до метки, промывая им фильтр. Далее содержимое переводят в стерильную склянку с притертой пробкой.

Стерилизацию раствора камфоры в масле осуществляют текучим паром в течение 1 ч.

Физиологические растворы. Физиологическими называются растворы, которые по составу растворённых веществ способны поддерживать жизнедеятельность клеток, переживающих органов и тканей, не вызывая существенных сдвигов физиологического равновесия в биологических системах. По своим физико-химическим свойствам физиологические растворы и примыкающие к ним кровезамещающие жидкости весьма близки к плазме человеческой крови. Физиологические растворы обязательно должны быть изотоничными, содержать хлориды калия, натрия, кальция и магния в соотношениях и количествах, характерных для кровяной сыворотки. Очень важна их способность сохранять постоянство концентрации водородных ионов на уровне, близком к рН крови (~7,4), что достигается введением в их состав буферов.

Большинство физиологических растворов и кровезамещающих жидкостей для обеспечения лучшего питания клеток и создания необходимого окислительно-восстановительного потенциала обычно содержат глюкозу, а также некоторые высокомолекулярные соединения.

Наиболее распространенными физиологическими растворами являются жидкость Петрова, раствор Тироде, раствор Рингера - Локка и ряд других. Иногда физиологическим условно называют 0,85% раствор натрия хлорида, применяющийся в виде вливаний под кожу, в вену, в клизмах при кровопотерях, интоксикациях, при шоке и т. д., а также для растворения ряда медикаментов при инъекционном введении.

Курсовая работа

Растворы для инъекций

I. Введение

II. Цели и задачи

III. Инъекционные растворы как лекарственная форма

IV. Стадии технологического процесса

1. Подготовительные работы

2. Изготовление раствора

Фильтрование и фасовка

Стерилизация раствора

Контроль качества готовой продукции

Оформление к отпуску

V. Практическая часть

VI. Экспериментальная часть

Используемая литература

I.Введение

Одной из важнейших дозированных лекарственных форма являются растворы для инъекций - solutiones pro injectionibus.

Раствор - жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенная для инъекционного применения.

Необычная широта применения инъекционных растворов обусловлена сравнительно большей действенностью и скоростью наступления эффекта при парентеральном введении лекарственных веществ. Это объясняется тем, что при данном способе введении лекарственные вещества попадают непосредственно во внутренние среды организма, минуя естественные барьеры. Тем самым, во-первых, ускоряется наступление фармакологического эффекта; во-вторых, увеличивается точность дозировки, так как устраняются те естественные потери лекарственного вещества, которые неизбежны при всасывании его слизистой оболочкой системы пищеварения; в-третьих, вещество, реагируя с тканями организма массою всей своей дозой (особенно при внутривенном введении), обусловливает более выраженный эффект, чем при энтеральном пути введения. Еще одним преимуществом этих растворов является то, что инъекции можно делать больному, который не в состоянии принять лекарственные вещества в силу потери сознания, наличия черепно-лицевого ранения и т.д. Кроме того, ампулированные инъекционные растворы являются формой портативной, удобной для хранения и транспортировки. Все это делает их одной из наиболее приемлемых дозированных лекарственных форм в практике лечебных учреждений самого различного профиля. Массовый выпуск ампул-шприцев еще более расширяет возможности применения инъекционных растворов в целях неотложной помощи.

Вместе с тем инъекционному способу введения лекарств присущи и недостатки, что должно быть учтено врачами и фармацевтами. Вследствие того, что лекарства вводятся, минуя защитные барьеры организма, возникает опасность его инфицирования, поэтому одним из важнейших требований, предъявляемых к инъекционным лекарствам, является стерильность. Введение непосредственно в ткань может вызвать изменение осмотического давления, значения рН и другие физиологические нарушения. При этом ощущается резкая боль, жжение, иногда лихорадочные явления. При введении лекарства непосредственно в кровь возникает опасность закупорки мелких кровеносных сосудов твердыми частицами или пузырьками воздуха, размеры которых превышают диаметр сосудов, что является весьма опасным. В связи с этим к инъекционным лекарствам предъявляются строгие требования, исключающие возможность изменения состава крови и закупорку кровеносных сосудов (эмболии).

II. Цели и задачи курсовой

Изучить теоретические основы технологии приготовления лекарственных форм для инъекций.

Познакомиться с последними исследованиями и достижениями в данной области (в вопросах подготовки вспомогательного материала, стабилизации, изотонирования и стерилизации растворов для инъекций, а так же контроля их качества).

В условиях производственной аптеки провести следующую работу:

) Изучить и сравнить с нормативной документацией:

условия изготовления инъекционных лекарственных форм;

условия получения воды для инъекций;

оснащение и оборудование асептического блока, уход за ним;

) Оценить качество инфузионного раствора по микробиологическим показателям, на примере раствора натрия хлорида изотонического.

III. Инъекционные растворы, как лекарственная форма

Различают две формы введения жидкостей в организм - инъекция (injectio - впрыскивание) и инфузия (infusio - вливание). Различие между ними заключается в том, что первые представляют собой сравнительно небольшие объемы жидкости, вводимые с помощью шприца, а вторые - большие объемы, вводимые капельно или струйно.

Инфузионные растворы способны поддерживать функции организма, не вызывая сдвига физиологического равновесия или приводя это равновесие к норме. Они, как правило, содержат макроэлементы, характерные для плазмы крови, но могут быть насыщены и микроэлементами, выполняющими важную физиологическую функцию.

Кровь в организме человека составляет 7,8% по отношению к общей массе, плазмы - 4,4, форменные элементы крови - 3,4%. Диаметр эритроцита в среднем составляет 7,55±0,0009 мкм.

Широкое использование инъекционных лекарственных форм в медицинской практике стало возможным в результате изыскания эффективных способов стерилизации, изобретения специальных сосудов (ампул) для хранения стерильных лекарственных форм.

Идея введения лекарственных веществ с нарушением кожного покрова принадлежит врачу А. Фуркруа (1785). Впервые подкожное впрыскивание с помощью серебряного наконечника, вытянутого в иглу, применил русский врач П. Лазарев (1851). В 1852 г. французский врач Ш.Г. Правац предложил шприц современной конструкции.

Классификация инъекций

Внутрикожные инъекции, или интракутанные (injections intraсutantat). Весьма малые объемы жидкости (0,2 - 0,5 мл) вводятся в кожу между ее наружным (эпидермис) и внутренним (дерма) слоями.

Подкожные инъекции (injections subcutaneae). В подкожную клетчатку могут быть введены растворы (водные или масляные), суспензии, эмульсии, обычно в малых объемах (1 -2 мл). Иногда капельным методом подкожно в течение 30 мин может быть введено до 500 мл жидкости.

При подкожном введении инъекцию проводят в наружную поверхность плеч и подлопаточные области. Всасывание происходит через лимфатические сосуды, откуда лекарственные вещества попадают в ток крови. Скорость всасывания зависит от природы растворителя. Водные растворы всасываются быстро, масляные растворы, суспензии и эмульсии всасываются медленно, обеспечивая пролонгированное действие.

Внутримышечные инъекции (injectiones intramusculares). Малые объемы (иногда до 50 мл) жидкости, обычно 1-5 мл, вводят в толщу мышц, преимущественно в область ягодиц, в верхненаружный квадрат, наименее богатый сосудами и нервами. Всасывание лекарственных веществ происходит через лимфатические сосуды.

Так же как и в случае подкожных инъекций, внутримышечно могут быть введены растворы (водные, масляные) суспензии и эмульсии. Скорость всасывания также зависит от характера дисперсной системы и природы растворителя (дисперсионной среды), но, как правило, всасывание лекарственных веществ идет быстрее, чем в случае подкожных инъекций.

Внутрисосудистые инъекции. Внутрь сосудов можно вводить только водные, совершенно прозрачные растворы, хорошо смешивающиеся с кровью.

Внутривенные инъекции (injections intravenosae) получили наибольшее распространение в медицинской практике. Водные растворы в объемах от 1 до 500 мл и более вводят непосредственно в венозное русло, чаще в локтевую вену. Действие лекарственных веществ развивается быстро. Вливание больших объемов раствора проводят медленно 120-180 мл в течение 1 ч, часто капельно (в этом случае раствор вводят в вену не через иглу, а через канюлю со скоростью 40-60 капель в минуту). Метод позволяет вводить до 3000 мл жидкости.

При внутривенном введении лекарственное вещество поступает немедленно и полно в большой круг кровообращения, проявляя при этом максимально возможный лечебный эффект. Таким путем достигается абсолютная биологическая доступность лекарственного вещества. Одновременно внутривенный раствор может служить стандартной формой при определении относительной биологической доступности лекарственных веществ, назначенных в иных лекарственных формах.

Внутриартериальные инъекции (injections intraartheriales) - это введение растворов обычно в бедренную или плечевую артерию. Действие лекарственных веществ в этом случае проявляется особенно быстро (через 1-2 с).

Буферные свойства крови, регулирующие рН, позволяют вводить в кровь жидкости с рН от 3 до 10. Масляные растворы вызывают эмболию (закупоривание капилляров), а вазелиновое масло в качестве растворителя непригодно даже для внутримышечного и подкожного введения, поскольку образует болезненно устойчивые олеомы (масляные опухоли). Нельзя также вводить в кровь суспензии, можно вводить эмульсии, но только с диаметром частиц, не превышающим диаметр эритроцитов (не более 1 мкм). Такими являются эмульсии для парентерального питания и эмульсии, выполняющие функции переносчиков кислорода.

Инъекции в центральный спинномозговой канал (injectiones intraarachnoidales, s. injections cerebrospinales, s. injections endolumbales0. Небольшие объемы жидкости (1-2 мл) вводят в подпаутинное пространство между мягкой и паутинной оболочками в области III - V поясничных позвонков. Обычно этим методом вводят анестезирующие растворы и растворы антибиотиков. Всасывание при этом идет медленно. Для спинномозговых инъекций применяют только истинные растворы с рН не менее 5 и не более 8.

Спинномозговые инъекции должен проводить только опытный врач-хирург, так как ранее концевой нити спинного мозга может привести к параличу нижних конечностей.

Реже используют другие виды инъекций: подзатылочные (внутричерепные - injectones suboccipitales), околокорешковые (injections paravertebrales), внутрикостные, внутрисуставные, внутриплевральные и т.д. Для внутричерепных инъекций применяют только истинные водные растворы (1 - 2 мл) нейтральной реакции. Действие лекарственного вещества развивается мгновенно.

В последние десятилетия достаточно широко применяют метод введения лекарственного вещества с помощью безыгольных инъекторов. Лекарственные вещества вводят очень тонкой струёй (диаметром в десятые и сотые доли миллиметра) под высоким давлением (до 300 кгс/см). Способ относительно безболезненный, не повреждающий кожу, обеспечивает быстрое наступление фармакологического эффекта, требует более редкой стерилизации инъектора, может обеспечить большое количество инъекций, вводимых в единицу времени (до 1000 инъекций в час).

IV. Стадии технологического процесса

В технологическом процессе производства инъекционных растворов выделяют 6 основных стадий:

Подготовительные мероприятия.

1. Создание асептических условий изготовления (подготовка асептического блока, персонала, оборудования, вспомогательного материала, тароукупорочных средств).

2. Подготовка лекарственных и вспомогательных веществ.

Растворение и химический контроль.

1. Дозирование (отмеривание) растворителя.

2. Добавление лекарственных веществ.

3. Добавление стабилизатора.

4. Химический контроль.

Фильтрование и фасовка.

1. Фильтрование

2. Дозирование раствора.

3. Укупорка резиновыми пробками.

4. Первичный контроль отсутствия механических включений.

5. Укупорка (обкатка) металлическими колпачками.

6. Маркировка флаконов (подготовка к стадии 4)

Стерилизация.

Контроль качества изготовленных лекарственных препаратов.

1. Вторичный контроль отсутствия механических включений.

2. Физико-химический анализ.

3. Бракераж.

Маркировка (оформление к отпуску).

Особое внимание следует обратить на то, что в соответствии с приказом МЗ РФ № 214 от 16 июля 1997г. изготовление стерильных растворов запрещается при отсутствии данных о химической совместимости, входящих в них лекарственных веществ, технологии и режиме стерилизации, а также при отсутствии методик анализа для полного химического контроля.

Подготовительные работы

Подготовительные работы включают подготовку помещения, оборудования, обеззараживание воздуха, подготовка посуды, тароукупорочных средств, вспомогательных материалов, растворителя, лекарственных веществ, а также персонала. Данные мероприятия регламентируются приказом МЗ РФ №309 от 21 октября 1997г. Перечень предупредительных мероприятий приведен также в п. 3 Инструкции по контролю качества лекарственных средств, изготовляемых в аптеках, утвержденных МЗ РФ от 16 июнь 1997г. приказом №214.

1.1 Требования и подготовка к работе помещения и оборудования асептического блока

Приготовление инъекционных растворов ведут в асептическом блоке. Помещения асептического блока должны размещаться в изолированном отсеке и исключать перекрещения «чистых» и «грязных» потоков воздуха. Асептический блок должен иметь отдельный вход или отделяться от других помещений производства шлюзами.

Перед входом в асептический блок должны лежать резиновые коврики или коврики из пористого материала, смоченные дезинфицирующими средствами (0,75% раствор хлорамина Б с 0,5% моющего средства или 3% раствор перекиси водорода с 0,5% моющего средства).

В шлюзе должна быть предусмотрена скамья для переобувания с ячейками для спец. обуви, шкаф для халата и биксов с комплектами стерильной одежды, раковина (кран с локтевым или ножным приводом), воздушная электросушилка и зеркало, гигиенический набор для обработки рук, инструкция о порядке переодевания и обработке рук, правила поведения в асептическом блоке.

В ассистентской-асептической не допускается подводка воды и канализации.

Для защиты стен от повреждений при транспортировки материалов или продукции (тележки и др.) необходимо предусмотреть специальные уголки или другие приспособления.

Для исключения поступления воздуха из коридора и производственных помещений в асептический блок, в последнем необходимо предусмотреть приточно-вытяжную вентиляцию. При этом движение воздушных потоков должно быть направлено из асептического блока в прилежащие к нему помещения, с преобладание притока над вытяжкой.

Рекомендуется с помощью специального оборудования создание горизонтальных или вертикальных ламинарных потоков чистого воздуха во всем помещении или в отдельных локальных зонах для защиты наиболее ответственных участков или операций (чистые камеры), или столы с ламинарным потоком воздуха. Они должны иметь рабочие поверхности и колпак из гладкого прочного материала.

Скорость ламинарного потока в пределах 0,3-0,6 м при регулярном контроле стерильности не реже 1 раза в месяц.

В помещении асептического блока необходимо поддерживать безупречную чистоту. Влажную уборку ассистентской - асептической проводят не реже одного раза в смену в конце смены с использованием дезинфицирующих средств. Ни в коем случае не допускается сухая уборка помещения. Один раз в неделю проводиться генеральная уборка, по возможности с высвобождением от оборудования.

Необходимо строго соблюдать последовательность стадий при уборки асептического блока. Начинать следует с асептической. Вначале моют стены и двери от потолка к полу. Движения должны быть плавными, обязательно сверху вниз. Затем моют и дезинфицируют стационарное оборудование и, в последнюю очередь, полы.

Все оборудование и мебель, вносимые в асептический блок, предварительно обрабатывают дезинфицирующим раствором.

Приготовление растворов дезинфицирующих средств должно осуществляться специально обученным персоналом в соответствии с действующими инструкциями.

Для дезинфекции твердых поверхностей, стен и полов допускается использование следующих дез.средств.

Отходы производства и мусор должны собираться в специальные контейнера с приводной крышкой. Удаление мусора должно осуществляться не реже одного раза в смену. Раковины для мытья рук и контейнера для мусора моют и дезинфицируют ежедневно.

2 Обеззараживание воздуха

Для дезинфекции воздуха и различных поверхностей в асептическом помещении устанавливают бактерицидные излучатели (стационарные или передвижные) с открытыми или экранированными лампами. Количество и мощность бактерицидных ламп должна подбираться из расчета не менее 2-2,5 Вт мощность неэкранированного излучателя на 1 м³ объема помещения. При экранированных бактерицидных лампах - 1 Вт на 1 м³.

Настенные бактерицидные облучатели ОБН-150 устанавливают из расчета 1 облучатель на 30 м³ помещения; потолочные ОБП-300 - из расчета один на 60 м³; передвижной ОБП-450 с открытыми лампами используется для быстрого обеззараживания воздуха в помещениях объемом до 100 м³. Оптимальный эффект наблюдается на расстоянии 5 м от облучаемого объекта.

Открытые бактерицидные лампы применяются в отсутствии людей в перерывах между работой, ночью или в специально отведенное время до начала работы на 1-2 часа. Включатели для открытых ламп следует располагать перед входом в производственное помещение и оборудовать сигнальной надписью «Горят бактерицидные лампы» или «Не входить, включен бактерицидный облучатель». Нахождение в помещениях, в которых работают неэкранированные лампы, запрещается. Вход в помещение разрешается только после отключения неэкранированной бактерицидной лампы, а длительное пребывание в указанном помещении - только через 15 мин после отключения.

При использовании экранированных ламп дезинфекцию воздуха в присутствии людей проводить можно. В этих случаях лампы размещают в специальной арматуре на высоте не ниже 2 м от пола. Арматура должна направлять поток лучей лампы вверх под углом в пределах от 5 до 80º над горизонтальной поверхностью.

Экранированные бактерицидные лампы могут работать до 8 часов в сутки. Если после 1,5-2 часов непрерывной работы ламп при отсутствии достаточной вентиляции в воздухе будет ощущаться запах озона, рекомендуется выключить лампы на 30-60 мин.

При использовании штативной облучательной установки для специального облучения каких-либо поверхностей, ее необходимо максимально приблизить для проведения облучения в течение не менее 15 мин.

3 Подготовка персонала

Персонал является одним из основных источников загрязнения окружающего воздуха и растворов лекарственных средств микроорганизмами и посторонними частицами. Поэтому к нему предъявляются повышенные требования ответственности, аккуратности и дисциплинированности. Персонал, работающий в асептическом блоке, должен знать основы гигиены и микробиологии санитарные требования и правила работы в асептических условиях.

Периодически (ежегодно) персонал должен проходить переподготовку, а вновь поступающие на работу должны быть ознакомлены с соответствующими документами, регламентирующими процесс производства стерильных растворов.

Для работы в асептических условиях (на участке приготовления, розлива, укупорки) комплект одежды должен быть стерильным и состоять из халата, шапочки, резиновых перчаток, бахил и повязки (например, 4-слойной марлевой типа "лепесток"). Оптимальным является использование брючного костюма со шлемом или комбинезона. При этом одежда должна быть собрана на запястьях и высоко на шее. Не допускается наличие у персонала одежды, в которой он находится на улице, а также объемной, ворсистой одежды под стерильной санитарной одеждой.

Комплект одежды стерилизуют в биксах в паровых стерилизаторах при 120 0 С в течение 45 минут или при 132 о С - 20 минут и хранят в закрытых биксах не более 3-х суток.

Обувь персонала асептического блока перед началом и после окончания работы дезинфицируют снаружи (2-кратное протирание дезраствором) и хранят в закрытых шкафах или ящиках в шлюзе.

При входе в шлюз надевают обувь, моют руки, надевают халат, шапочку, повязку, которую меняют каждые 4 часа, бахилы, дезинфицируют руки. На обработанные руки персонала, занятого на участке розлива и укупорки раствора, особенно не подвергаемого термической стерилизации, должны быть надеты стерильные резиновые перчатки (6ез талька), при этом рукава должны быть заправлены в перчатки.

При обработке рук необходимо свести до минимума количество микроорганизмов на кожном покрове рук и замедлить поступление новых из глубины кожи.

Для механического удаления загрязнений и микрофлоры руки моют теплой проточной водой с мылом и щеткой в течение 1 - 2 мин., обращая внимание на околоногтевые пространства. Для удаления мыла руки ополаскивают водой и вытирают насухо, после того, как надета стерильная одежда, руки смывают водой и обрабатывают дезсредствами. Оптимально использовать такие сорта мыла, как подарочное, банное, детское, хозяйственное, обладающие высокой пенообразующей способностью. Сорта с добавлением специальных компонентов (сульсеновое, дегтярное, борно-тимоловое, карболовое мыло) не являются достаточно эффективными для снижения микробной обсемененности кожи рук персонала.

Щетки предварительно моют, сушат и стерилизуют в паровом стерилизаторе при температуре 120 о С в течение 20 минут, или кипятят в воде или растворе натрия гидрокарбоната 2 % в эмалированной посуде в течение 15 минут. Хранят их в стерильных биксах или посуде, вынимая по мере надобности стерильным корнцангом, который должен храниться в стакане с 0,5 % раствором хлорамина Б.

Для дезинфекции рук используют следующие средства: раствор хлоргексидина биглюконата (гибитана) 0,5%, раствор иодопирона 1%, раствор хлорамина 0,5 %. Их необходимо чередовать кaждыe 5 -6 дней для предотвращения появления устойчивых форм микроорганизмов.

При обеззараживании рук иодопироном или раствором хлоргексидина препарат наносят на ладони в количестве 5 - 8 мл и втирают в кожу рук; при обработке рук раствором хлорамина их погружают в раствор и моют в течение 2-х минут, затем дают рукам высохнуть.

После окончания работы руки обмывают теплой водой и обрабатывают смягчающими средствами, например, смесью из равных частей глицерина, 10 % раствора аммиака и воды.

При работе в асептических условия:

запрещается входить в асептическую комнату в не стерильной одежде и выходить из асептического блока в стерильной одежде; курить и принимать пищу; поднимать и повторно использовать предметы, упавшие на пол во время работы; движения персонала должны быть медленными, плавными и рациональными. Целесообразно предусмотреть в специальной одежде персонала отличительные знаки, например, головные уборы другого цвета, кроме белого, чтобы было легко распознать нарушения порядка перемещения кого-нибудь из персонала в асептической зоне, между помещениями или за пределами асептического блока.

следует ограничить разговоры и перемещения в асептическом блоке, чтобы не увеличивать число выделяемых микроорганизмов и частиц. При необходимости устного общения с сотрудником; находящимся вне асептического блока, следует использовать телефон или другое переговорное устройство.

очищать нос следует в шлюзе с использованием стерильного платка или салфетки; руки после этого необходимо вымыть и продезинфицировать.

рекомендуется носить короткую стрижку при этом волосы должны. быть убраны под плотно прилегающую шапочку или косынку, делать гигиенический маникюр без покрытия ногтей лаком, не пудриться до и во время работы, красить губы только жирной помадой, не носить ювелирные изделия (серьги, кольца, броши и т. п.).

Во избежание распространения микроорганизмов обо всех случаях заболевания (кожные, простудные, порезы, нарывы и т. п.) необходимо ставить в известность администрацию.

4 Подготовка посуды и тароукупорочных средств

1. Подготовка посуды включает следующие операции: paстаривание, просмотр и отбраковка, дезинфекция (при необходимости), замачивание и мойка (или моюще-дезинфицирующая обработка), ополаскивание, стерилизацию, контроль качества обработки.

Для расфасовки стерильных растворов используют бутылки и флаконы из нейтрального стекла марки НС-1 и НС-2.

Для растворов со сроком хранения не более 2-х суток допускается использование флаконов из щелочного стекла типа АБ-1 после их предварительной обработки (Приложение N 2). В случае поступления в аптеку посуды без указания марки стекла определяют его щелочность (Приложение N 3) и при необходимости посуду подвергают соответствующей обработке и контролю.

Посуду новую и бывшую в употреблении (в неинфекционных отделениях лечебно-профилактических учреждений) обмывают снаружи и внутри водопроводной водой для удаления механических загрязнений и остатков лекарственных веществ, замачивают в растворе моющих средств на 25 - 30 мин. Сильно загрязненную посуду замачивают более продолжительное время (до 2 -3 часов) (Приложение N 4).

Посуду, бывшую в употреблении в инфекционном отделении, перед мытьем дезинфицируют (Приложение N 5).

После дезинфекции посуда должна быть промыта в проточной воде. Повторное использование одного и того же дезинфицирующего раствора не допускается.

После замачивания в моющем или моюще-дезинфицирующем средстве посуду моют в этом же растворе с помощью ерша или моечной машины.

Для полноты смываемости моющих средств, содержащих поверхностно-активные вещества посуду ополаскивают 5 раз проточной водопроводной и 3 раза очищенной водой, заполняя флаконы и бутылки полностью. При машинном ополаскивании в зависимости от типа моечной машины время выдержки в режиме ополаскивания 5 - 10 мин.

После обработки моющими растворами горчицы или натрия гидрокарбоната с мылом достаточна пятикратная обработка водой (2 раза водопроводной и 3 раза очищенной). Оптимально последнее ополаскивание посуды проводить водой очищенной или водой для инъекций (для инъекционных растворов), профильтрованной через микрофильтр с размером пор не более 5 мкм.

Контроль качества вымытой посуды проводят визуально по отсутствию пятен и подтеков, по равномерности стекания воды со стенок флаконов после их ополаскивания.

В смывах с внутренней поверхности посуды не должно быть видимых невооруженным глазом механических включений.

При необходимости полноту смываемости синтетических моющих и моюще-дезинфицирующих средств определяют по величине рН потенциометрическим методом, рН воды после последнего ополаскивания посуды должен соответствовать рН исходной воды.

После ополаскивания целесообразно каждый флакон или бутылку накрыть алюминиевой фольгой для предотвращения загрязнения посуды в процессе стерилизации перемещения.

Чистую посуду стерилизуют горячим воздухом при 180 о С в течение 60. мин. или насыщенным паром под давлением при 120 о С в течение 45 мин. После снижения температуры в стерилизаторе до 60 . 70 о С посуду вынимают, закрывают стерильными пробками и сразу же используют для розлива растворов. Допускается хранение посуды в течение 24 часов в условиях, исключающих ее загрязнение.

Крупноемкие баллоны в порядке исключения разрешается после мытья обеззараживать пропариванием острым паром в течение 30 мин. После стерилизации (или обеззараживания емкости) закрывают стерильными пробками, фольгой или обвязывают стерильным пергаментом и хранят в условиях, исключающих их загрязнение, не более 24часов.

5 Обработка укупорочных средств, вспомогательного материала

1. Процесс подготовки дает возможность получить стерильные пробки, не содержащие видимых механических включений и состоит из следующих операций: просмотр и отбраковка, мойка, стерилизация, сушка (при необходимости).

Для укупорки флаконов и бутылок с водными, водно-спиртовыми и масляными растворами используют пробки из резиновой смеси марок ИР-21 (светло-бежевого цвета), ИР-119, ИР-119А (серого цвета), 52-369, 52-369/1, 52-369/2 (черного цвета), допускается использование пробок из резиновой смеси марки 25П (красного цвета) для водных растворов экстемпорального изготовления.

Новые резиновые пробки моют вручную или в стиральной машине в горячем (50-60 о С) 0,5 % растворе моющих средств "Лотос" или "Астра" в течение 3-х минут (соотношение веса пробок и раствора моющего средства 1: 5); промывают 5 раз горячей водопроводной водой, каждый раз заменяя ее свежей, и 1 раз очищенной водой; кипятят в 1 % растворе натрия гидрокарбоната в течение 30 минут, промывают 1 раз водопроводной водой и 2 раза очищенной. Затем помещают в стеклянные или эмалированные емкости, заливают очищенной водой, закрывают и выдерживают в паровом стерилизаторе при -120 о С в течение 60 минут. Воду после этого сливают и пробки еще раз промывают очищенной водой.

После обработки пробки стерилизуют в биксах в паровом стерилизаторе при 120 о С в течение 45 мин. Стерильные пробки хранят в закрытых биксах не более 3-х сут. После вскрытия биксов пробки должны быть использованы в течение - 24 часов.

При заготовке впрок резиновые пробки после обработки (п. 2.3.), не подвергая стерилизации, сушат в воздушном стерилизаторе при температуре не выше 50 о С в течение 2 часов и хранят не более 1 года в закрытых биксах или банках в прохладном месте. Перед использованием резиновые пробки стерилизуют в паровом стерилизаторе при 120 о С в течение 45 минут.

Резиновые пробки, бывшие в употреблении, промывают очищенной водой, кипят в очищенной воде 2 раза по 20 минут, каждый раз заменяя воду свежей, и стерилизуют, как указано выше.

Резиновые пробки, бывшие в употреблении в инфекционном отделении, подвергаются дезинфекции и повторно не используются.

В смывах с обработанных пробок не должно быть механических включений, видимых невооруженным глазом.

Алюминиевые колпачки после просмотра и отбраковки выдерживают 15 минут в 1 - 2% растворе моющих средств, подогретом до 70 - 80 о С. Соотношение массы колпачков к объему моющего раствора 1: 5. Затем раствор сливают и колпачки промывают проточной водопроводной водой, затем водой очищенной. Чистые колпачки помещают в биксы и сушат в воздушном стерилизаторе при температуре 50 - 60 о С. хранят в закрытых емкостях (биксах, банках, коробках) в условиях, исключающих их загрязнение.

Вспомогательный материал (вата, марля, пергаментная бумага, фильтры и т. п.) помещают в биксы или банки и стерилизуют в паровом стерилизаторе при 120 о С в течение 45 минут. Хранят в закрытых биксах или банках в течение 3-х суток, после вскрытия материал используют в течение 24 часов.

Различные стеклянные, фарфоровые и металлические предметы (колбы, цилиндры, воронки и т. п.) стерилизуют в воздушном стерилизаторе при 180 о С- 60 минут или в паровом стерилизаторе при 120 о С в течение 45 минут, используя стерилизационные коробки, биксы, двухслойные упаковки из бязи или пергамента.

Съемные части технологического оборудования, непосредственно соприкасающиеся с раствором ЛС (трубки резиновые и стеклянные, фильтр-держатели, мембранные микрофильтры, прокладки и др.) обрабатывают, стерилизуют и хранят в режимах, описанных в документации по использованию соответствующего оборудования.

6 Подготовка и выбор растворителя

Лекарственные вещества и растворители, применяемые для приготовления инъекционных растворов, должны соответствовать требованиям ГФ, ФС или ВФС. Особые требование предъявляются к растворителям для приготовления инъекционных растворов.

Стерилизация приводят лишь к гибели микроорганизмов; убитые микробы, продукты их жизнедеятельности и распада остаются в воде и обладают пирогенными свойствами, вызывая резкий озноб и другие не желательные явления. Наиболее резко пирогенные реакции проявляются при сосудистых, спинномозговых и внутричерепных инъекциях.

Поэтому приготовление инъекционных растворов должно производится на воде, не содержащей пирогенные вещества.

Введена методика обнаружения и нормы содержания пирогеннообразующих микроорганизмов до стерилизации для инъекционных и инфузионных растворов аптечного изготовления, на которые имеется нормативно-техническая документация.

Для предупреждения окисления лекарственных веществ, необходимо, чтобы используемая вода содержала минимальное количество растворенного кислорода. Поэтому необходимо применять свежепрокипяченную воду для инъекций.

Вода для инъекций должна отвечать требованиям к воде очищенной и быть апирогенной. Её можно хранить не более 24 часов в асептических условиях

В аптеки контроль и испытания на пирогенность воды для инъекций проводят не реже 2 раз в квартал. Воду очищенную и воду для инъекций обязательно подвергают качественному анализу (пробы берут из каждого баллона, а при подаче воды по трубопроводу на каждом рабочем месте) на отсутствие Cl²¯ , SO ²¯солей Ca²+. Вода, предназначенная для приготовления стерильных растворов, кроме указанных выше испытаний, проверяют на отсутствие восстанавливающих веществ, солей аммония и двукислого углерода в соответствие с требованиями действующей ГФ.

Ежеквартально вода для инъекций и вода очищенная направляются в контрольно-аналитическую лабораторию для полного химического анализа.

Результаты контроля воды очищенной и воды для инъекций должны регистрироваться в журнале, форма которого приведена в приложении 3 к инструкции приказа МЗ РФ №214.

Требования к получению, транспортировки и хранению воды для инъекций приведены в п.7 инструкции приказа №309.

Получение воды для инъекций должно осуществляться в помещении дистилляционной асептического блока, где категорически запрещается выполнять какие-либо работы не связанные с перегонкой воды при помощи аквадистилляторов марки АЭ-25, ДЭ-25, АА-1, А-10, АЭВС-4 и др. Аквадистилляторы этих марок снабжены сепараторами, которые препятствуют прохождению капелек воды, которые могут содержать микроорганизмы, в конденсационную камеру.

Воду для инъекций используют свежеприготовленной и хранят при температуре 5-10°С или 80-95°С в закрытых емкостях, изготовленных из материалов, не изменяющих свойств воды, защищая её от попадания механических включений и микробиологических загрязнений, не более 24 часов.

Полученную воду для инъекций собирают в простерилизованные обработанные паром сборники промышленного производства (в порядке исключения стеклянные баллоны). Сборники должны иметь четкую надпись «Вода для инъекций», прикрепляется бирка с указанием даты её получения, № анализа и подписью проверившего. Если используются одновременно несколько сборников, их номеруют. На этикетках емкостей для сбора и хранения воды для инъекций должно быть обозначено, что содержимое не простерилизовано.

В дополнение к инструкции приказа №309, в настоящее время разработаны несколько ФС, регламентирующих качество воды для инъекций:

ФС42-2620-97 «Вода для инъекций»

ФС42-213-96 «Вода для инъекций в ампулах»

ФС42-2980-99 «Вода для инъекций во флаконах».

В качестве растворителя при приготовлении растворов для инъекций применяются также персиковое, миндальное, оливковое и другие жирные масла. Это маловязкие, легкоподвижные жидкости, способные пройти через узкий канал иглы.

ГФХI требует, чтобы масла для инъекций были получены методом холодного прессования из свежих семян, хорошо обезвожены, не содержащие белка. Кроме того, особое значение имеет кислотность масла. У масел для инъекций кислотное число должно быть не менее 2,5 иначе они могут вызвать болезненность в месте введения.

Растворителем для инъекционных растворов могут быть также спирты (этиловый, бензиловый, пропиленгликоль, полиэтиленоксид 400, глицерин), некоторые эфиры (бензилбензоат, этиоолеат).

Недопустимо применения в качестве растворителя для инъекций вазелинового масла, которое не усваивается организмом, а при введении под кожу образует не рассасывающиеся масляные опухоли.

7 Подготовка лекарственных и вспомогательных веществ

Лекарственные вещества, используемые при изготовлении инъекционных растворов должны отвечать требованиям ГФ, ФС, ВФС, ГОСТ, квалификации х.ч. (химически чистый) и ч.д.а. (чистый для анализа). Некоторые вещества подвергаются дополнительной очистки и выпускаются повышенной чистоты, квалификации «Годен для инъекций». Примеси в последних могут оказать или токсическое воздействие на организм больного, или снизить стабильность инъекционного раствора.

В глюкозе и желатине (благоприятная среда для развития микроорганизмов) могут содержаться пирогенные вещества. Поэтому для них определяется тест-доза на пирогены в соответствии со статьей ГФХ1 «Проверка пирогенности». Глюкоза не должна давать пирогенный эффект при введении 5% раствора из расчета 10 мг/кг массы кролика, желатин при введении 10% раствора.

Бензилпеницеллина каливую соль также проверяют на пирогенность и испытывают на токсичность.

Для некоторых препаратов проводят дополнительные исследования на чистоту: кальция хлорид проверяют на растворение в этаноле и содержание железа, гексаметилентетрамин - на отсутствие аминов, солей аммония и хлороформа; коффеина-бензоат натрия - на отсутствие органических примесей (раствор не должен мутнеть или выделять осадок в течение 30 мин при нагревании); магния сульфат для инъекций не должен содержать марганец и другие вещества, что отмечено в нормативной документации.

Некоторые вещества влияют на стабильность инъекционных растворов. Например, натрия гидрокарбонат квалификации х.ч. и ч.д.а., отвечает требованиям ГОСТа 4201-66, а также «Годен для инъекций», должен выдерживать дополнительные требования на прозрачность и бесцветность 5% раствора, ионов кальция и магния должно быть не более 0,05%, иначе в процессе термической стерилизации раствора будет выделяться опалесценция карбонатов этих катионов. Эуфилин для инъекций должен содержать повышенное количество этилендиамина (18-22%), используемый как стабилизатор этого вещества в количестве 14-18% в растворах для перорального применения, и выдерживать дополнительные испытания на растворимость. Натрия хлорид (х.ч.), выпускаемый по ГОСТу 4233-77, должен соответствовать требованиям ГФ, калия хлорид (х.ч.) должен отвечать требованиям ГОСТа 4234-65 и ГФ. Натрия ацетат квалификации ч.д.а. должен отвечать требованиям ГОСТа 199-68, натрия бензоат не должен содержать более 0,0075% железа. Раствор тиамина бромида для инъекций должен выдерживать дополнительные испытания на прозрачность и бесцветность.

Лекарственные вещества, используемые для приготовления инъекционных растворов хранят в отдельном шкафу в стерильных штангласах, закрытыми притертыми пробками и надписью «Для стерильных лекарственных форм». Термостойкие вещества перед наполнением штангласа подвергают термической стерилизации.

Штангласы перед наполнением моют и стерилизуют. На каждом штангласе должна быть прикреплена бирка с указанием: № серии, предприятия изготовителя, № анализа контрольно-аналитической лаборатории, сроком годности, датой заполнения и подписью, заполнившего штанглас. Заполнение и контроль за сроками годности осуществляется в соответствии с приказом МЗ РФ № 214 от 16 июля 1997г.

2. Изготовление раствора

Стерильные растворы изготавливают массо-объемным способом.

В мернике-смесителе или другой емкости в части воды растворяют лекарственные вещества, при необходимости добавляют вспомогательные вещества (стабилизаторы, изотонирующие и др.), раствор перемешивают и доводят растворителем до определенного объема. При отсутствии мерной посуды объем воды рассчитывают, пользуясь значениями плотности раствора данной концентрации или коэффициентом увеличения объема.

Последовательность отмеривания или смешивания растворов определяется особенностями прописи. Объем инъекционных растворов во флаконах в соответствии с ГФ всегда должен быть больше номинального.

Номинальный объем, мл

Объем заполнения, мл

Число сосудов для контроля заполнения, шт


Невязкие растворы

Вязкие растворы

На 2% больше номинального

На 3% больше номинального


При отсутствии мерной посуды больших объемов для определения количества растворителя следует использовать таблицы (см. табл. №1). Изотонические эквиваленты лекарственных веществ по хлориду натрия приведены в приложении приведены в табл. №2.

Табл. №1. Коэффициенты увеличения объема водного раствора при растворении лекарственных веществ*

Наименование лекарственных веществ

Коэффициенты увеличения объема, мл/г

Амидопирин

Аммония хлорид

Анальгин

Антипирин

Барбамил

Барбитал-натрий

Бензилпенициллина натриевая соль

Гексаметилентетрамин

-//- (влажность 10 %)

Димедрол

Желатоза

Изониазид

Йод (в растворе калия йодида)

Калия бромид

Калия перманганат

-//- хлорид

Кальция глюконат

-//- лактат

-//- хлорид

Карбамид

Кислота аскорбиновая

-//- борная

Кислота глютаминовая

-// лимонная

Колларгол

Кофеин-бензоат натрия

Магния сульфат

Метилцеллюлаза

Натрия ацетат

-//- ацетат (безводный)

-//- бензоат

-//- бромид

-//- гидрокарбонат

-//- гидроцитрат

-//- нитрат

Натрия нитрит

-//- нуклеинат

-//- пара-аминосалицилат

-//- салицилат

-//- сульфат (кристаллический)

-//- тетраборат

-//- тиосульфат

Натрия хлорид

-//- цитрат

Новокаин

Новокаинамид

Норсульфазол-натрий

Осарсол (в растворе натрия гидрокарбоната)

Папаверина гидрохлорид

Пахикарпина гидройодид

Пилокарпина гидрохлорид

Пиридоксина гидрохлорид

Поливинилпирролидон

Протаргол

Резорцин

Сахароза

Свинца ацетат

Серебра нитрат

Спазмолитин

Спирт поливиниловый

Стрептомицина сульфат

Стрептоцид растворимый

Сульфацил-натрий

Тиамина бромид

Тримекаин

Фенол кристаллический

Хинина гидрохлорид

Хлорамин Б

Хлоралгидрат

Холина хлорид

Цинка сульфат (кристаллический)

Экстракт-концентрат горицвета сухой стандартизованный 1:1

Экстракт-концентрат корня алтея сухой стандартизованный 1:1

Этазол-натрий

Этилморфина гидрохлорид

Эофиллин

Эфедрина гидрохлорид

* - Коэффициент увеличения объема (мл/г) показывает прирост объема раствора в мл при растворении 1 г лекарственного вещества при 20 о С.

Пример расчета:

Приготовить раствор магния сульфата 20% - 1000 мл.

Коэффициент увеличения объема магния сульфата - 0,5.

При растворении 200 г магния сульфата объем раствора увеличивается на 100 мл (0,5 х 200).

Необходимый объем воды определяется по разности: 1000 - (0,5 х 200) = 900 мл.

Табл. №2. Изотонические эквиваленты лекарственных веществ по хлориду натрия

Категорически запрещается одновременное изготовление на одном рабочем месте нескольких стерильных растворов, содержащих лекарственные вещества с различными наименованиями или одного наименования, но в разных концентрациях.

После изготовления раствора берут пробу для полного химического контроля и при получении удовлетворительных результатов анализа раствор фильтруют.

2 Изотонирование растворов для инъекций

Растворы, у которых осмотическое давление равно осмотическому давлению крови, называют изотоническими. Кровяная плазма, лимфа, слезная и спинная жидкость имеют постоянное осмотическое давление, поддерживаемое специальными осморецепторами. Введение в кровяное русло больших количеств инъекционных растворов с другим осмотическим давлением может привести к сдвигу осмотического давления и вызвать тяжелые последствия. Объясняется это следующими обстоятельствами. Клеточные оболочки, как известно, обладают свойством полупроницаемости, т. е. Пропуская воду, не пропускают многие растворенные в ней вещества. Если снаружи клетки будет находиться жидкость с иным осмотическим давлением, чем внутри клетки, то жидкость движется в клетку (экзоосмос) или из клетки (эндоосмос) до момента выравнивания концентрации. Если ввести в кровь раствор с высоким осмотическим давлением (гипертонический раствор), то в результате и в окружающей их плазме жидкость из эритроцитов направляется в плазму, эритроциты при этом, лишаясь части воды, сморщиваются (плазмолиз). Напротив, если вводить раствор с малым осмотическим давлением (гипотонический раствор), то жидкость пойдет внутрь клетки, эритроциты будут разбухать, оболочка может лопнуть, а клетка погибнуть (произойдет гемолиз). Чтобы избежать указанных осмотических сдвигов, следует вводить в кровяное русло растворы с осмотическим давлением, равным осмотическому давлению крови, спинномозговой и слезной жидкости, т.е. 7,4 атм и соответствовать осмотическому давлению раствора натрия хлорида 0,9%.

Изотонические концентрации лекарственных веществ в растворах можно рассчитать разными способами:

Расчет по закону Вант-Гоффа. По закону Вант-Гоффа растворенные вещества ведут себя аналогично газам и поэтому к ним с достаточным приближением применимы газовые законы. Если учесть, что 1 грамм-молекула любого недиссоциируемого вещества занимает в водном растворе при температуре 0°С и давлении 760 мм. рт. ст. - 22,4 л, т. е. точно так же, как 1 грамм-молекула газа. Это значит, что если растворить в 22,4 л растворителя 1 грамм-молекулу вещества, то раствор будет создавать давление равное 1 атм. Для применения данного раствора необходимо поднять давление до осмотического давления плазмы крови. Для этого уменьшим объем растворителя для 1 грамм-молекулы вещества, до момента, когда раствор будет создавать давление 7,4 атм.

Осмотическое давление раствора будет равно осмотическому давлению плазмы крови, если в 22,4 л воды растворить 7,4 грамм-молекулы вещества или если в Х1 л воды растворить 1 грамм-молекулу вещества.

Т. к. закон действителен при температуре 273〫К(0〫С), то необходимо ввести поправку на температуру тела человека. Т. к. осмотическое давление воздуха пропорционально температуре, то объем растворителя увеличим, чтобы сохранить осмотическое давление равное осмотическому давлению плазмы крови.

При температуре равной 273К 1 грамм-молекула занимает объем 3,03 л, а при температуре 310К (температура тела человека) - Х2 л.

Отсюда,


Для приготовления 3,44 л раствора требуется 1 грамм-молекула вещества, а

для приготовления 1л раствора - Х3 грамм-молекула.


По закону Вант-Гоффа, чтобы приготовить изотонический раствор необходимо 0,29 грамм-молекул вещества растворить в воде и довести объем раствора до 1 л.

Выведем формулу для расчета

mлв =0,29M,

где M - молекулярная масса вещества,

29 - фактор изотонирования неэлектролита.

Фактор изотонирования проще выводить из уравнения Клайперона:

где р - осматическое давление плазмы крови (атм),- объем раствора,- число грамм-молекул частиц,- газовая постоянная, выраженная в атмосферных литрах (0,082),- абсолютная температура.

Отсюда,


Приведенные расчеты верны, если мы имеем дело с неэлектролитами, т.е. не распадающимися при растворении на ионы (глюкоза, уротропин, сахароза и т.д.). Если приходится растворять электролиты, нужно учитывать, что они диссоциируют в водных растворах и их осмотическое давление тем выше, чем выше степень диссоциации.

Допустим, установлено, что вещество в растворе диссоциирует на 100%:

NaCl Na+ + Cl.

Тогда число элементарных частиц увеличивается вдвое, следовательно, если раствор натрия хлорида содержит в 1 л 0,29 грамм-молекул вещества, то его осмотическое давление в 2 раза больше. Следовательно, фактор изотонирования 0,29 для электролитов не применим. Он должен быть уменьшен в зависимости от степени диссоциации. Для этого в уравнение Клайперона необходимо ввести коэффицент, показывающий во сколько раз число частиц увеличивается вследствие диссоциации. Этот множитель называют изотоническим коэффицентом и обозначается i.

Таким образом, уравнение Клайперона примет вид:


Коэффицент i зависит от степени и характера электролитической диссоциации и может быть выражен уравнением:

i=1+α(n+1),

где α - степень электролитической диссоциации,- число элементарных частиц, образующихся из 1 молекулы при диссоциации.

Для разных групп электролитов i может быть подсчитан следующим образом:

А) для бинарных электролитов с однозарядными ионами типа К+А:

α=0,86, n=2;= 1+0,86*(2-1)=1,86

Например, натрия хлорид, калия хлорид, эфедрина гидрохлорид и т.д.

Б) Для бинарных электролитов с двузарядными ионами типа К+²А²:

i = 1+0,5*(2-1)=1,5

Например, магния сульфат, атропина сульфат и т.д.

В)Для тринарных электролитов типа К²+А2 и К2 +А²:

α=1; n=3;= 1+1*(3-1)=3

Например, кальция хлорид, натрия гидрофосфат и т.п.

Для изотонирования раствора другим веществом, что встречается очень часто, когда вещества прописаны в небольших количествах и их концентрации недостаточно для изотонирования раствора. При этом расчеты усложняются.

Например: Rp.: Cocaini hydrochloridi 0,1chloride q.s. ut f. sol. isotonici 10 ml.S. Для инъекций по 1 мл.

Рассчитаем его изотоническую концентрацию:


По расчету выписанная концентрация кокаина, значительно ниже, чем необходимая для изотонирования раствора. Определим объем, который изотонирует 0,1 г кокаина.

57г изотонируют 100 мл раствора, а

1 г - Х мл раствора.


Из этого следует, что натрия хлорида необходимо для изотонирования 10-1,5 = 8,5 мл.

Рассчитаем необходимую массу натрия хлорида:


для изотонирования 100 мл раствора надо взять 0,91 г натрия хлорида,

а для изотонирования 8,5 мл - Х г.


В практической работе расчеты можно упростить путем применения общих формул:

Если изотоничность достигается одним веществом, для его расчета применяют формулу:


m - количество вещества, добавляемого для изотонирования раствра,- объем изотонируемого раствора (мл),- молекулярная масса вещества,

Число миллилитров.

Если изотоничность раствора лекарственного вещества достигается с помощью другого (дополнительного) вещества, то применяют формулу:


Молекулярная масса дополнительного вещества;

Изотонический коэффицент для дополнительного вещества;

Количество дополнительного вещества (г);

I - масса(г), молекулярная масса и изотонический коэффицент для основного вещества.

При более сложных прописях (с тремя и более компонентами) первоначально рассчитывается какой объем раствора изотонируют вещества, чей массы известны. Затем определяется масса изотонирующего компанента.

Криоскопический метод. По этому методу изотоничные по отношению к сыворотке крови растворы должны иметь депрессию (понижение) температуры замерзания, равную депрессии сыворотки крови. Депрессия её равна 0,52ºС. При расчетах необходимо учитывать, константы депрессии в справочнике даны 1% раствора.

Расчеты будут выглядеть следующим образом:

% раствор вещества имеет депрессию Δt º, а

Х% раствор вещества - 0,52º.

Следовательно,


Иногда используются графический метод расчета изотонической концентрации, позволяющий по разработанным диаграммам (нонограммам) быстро, но с некоторой приближенностью, определить количество вещества необходимое для изотонирования раствора лекарственного вещества.

Недостатком этих методов можно считать то, что либо расчеты изотонической концентрации ведутся по одному компоненту, либо расчеты массы второго вещества слишком громоздки. И т.к. ассортимент однокомпонентных растворов не так велик, и все чаще используют дву- и более компонентные прописи, гораздо проще проводить расчеты с использованием изотонического эквивалента. В настоящее время другие методы расчета не используются.

Изотоническим эквивалентом по натрию хлориду называют то количество натрия хлорида, которое создает в одинаковых условиях осмотическое давление равное осмотическому давлению 1 г вещества. Зная эквивалент по натрию хлориду, можно изотонировать любые растворы, а так же определить их изотонические концентрации.

Таблица изотонических эквивалентов по натрию хлориду приведены в ГФ I издания, выпуск 2.

Пример расчета: Rp.: Dicaini 3,0chloridi q.s. ut f. sol. isotonici 1000 ml.S.

Для приготовления изотонического раствора только из натрия хлорида, его нужно взять 9 г для приготовления 1 л раствора (изотоническая концентрация натрия хлорида равна 0,9 %). По таблице ГФXI определяем, что изотонический эквивалент по натрию хлориду у дикаина равен 0,18 г. Это означает, что

г дикаина равноценен 0,18 г натрия хлорида, а

г дикаина - 0,54 г натрия хлорида.

Следовательно, по прописи натрия хлорида необходимо взять: 9,0 - 0,54 = 8,46 г.

3 Стабилизация инъекционных растворов

Под стабильностью инъекционных растворов понимают неизменяемость состава концентрации находящихся в растворе лекарственных веществ в течение установленных сроков хранения. Она в первую очередь зависит от качества исходных растворителей и лекарственных веществ, которые должны полностью отвечать требованиям ГФ или ГОСТов.

В ряде случаев предусматривается особая очистка лекарственных веществ, предназначенных для инъекций. Повышенной степенью чистоты должны обладать гексаметилентетрамин, глюкоза, кальция глюконат, кофеин-натрия бензоат, натрия бензоат, натрия гидрокарбонат, натрия цитрат, эуфиллин, магния сульфат и др. Чем выше чистота препаратов, тем более стабильны получаемые из них растворы.

Неизменность лекарственных веществ достигается также путем соблюдения оптимальный условий стерилизации (температуры, продолжительности), использование допустимых консервантов, позволяющих достигать необходимого эффекта стерилизации при более низкой температуре, и применения стабилизаторов, соответствующих природе лекарственных веществ.

Выбор стабилизатора зависит от физико-химических свойств лекарственных веществ. Условно их делят на три группы:

) соли, образованные слабыми основаниями и сильными кислотами, стабилизируются хлористоводородной кислотой;

) соли, образованные сильными основаниями и слабыми кислотами, стабилизируются щелочами;

) легко окисляющиеся вещества стабилизируются антиоксидантами (противоокислителями).

Стабилизация растворов солей слабых оснований и сильных кислот

К этой группе относится большое количество солей алкалоидов и синтетических азотистых оснований, широко применяемых в форме инъекционных растворов. Такие соли в водном растворе могут показывать слабокислую реакцию вследствие гидролиза. При этом образуются слабо диссоциированное основание и сильно диссоциированная кислота с образованием свободных ионов гидроксония.

D

Добавление к таким растворам свободной кислоты создает избыток ионов гидроксония, чем подавляется гидролиз (вызывает сдвиг равновесия влево). Уменьшению концентрации ионов гидроксония способствует щелочь, выделяемая стеклом, в связи с чем равновесие сдвигается вправо и растворы обогащаются малодиссоциированным основанием.

Нагревание раствора повышает интенсивность гидролиза солей, сдвигая реакцию вправо, поэтому при тепловой стерилизации и последующем хранении pH инъекционных растворов повышается. Основания алкалоидов, обладающие малой растворимостью в воде, могут при этом выделиться в осадок. При стерилизации инъекционных растворов в щелочном стекле наблюдается выделение даже сравнительно сильных свободных оснований, например, новокаина, что видно по замасливанию стенок сосуда.

Необходимо отметить, что некоторые алкалоиды и синтетические препараты со сложной эфирной и лактонной группировками (атропина сульфат, скополамина гидробромид, гоматропина гидрохлорид, физостигмина салицилат, новокаин) при нагревании в слабощелочных или даже нейтральных средах могут частично гидролизоваться с образованием продуктов, обладающих измененным фармакологическим действием.

Препараты, содержащие фенольные гидроксилы (морфина гидрохлорид, апоморфина гидрохлорид, сальсолина гидрохлорид, адреналина гидротартрат и др.) при нагревании в слабощелочных растворах окисляются с образованием более ядовитых окрашенных продуктов.

Пахикарпина гидройодид даже в слабощелочном растворе осмоляется. Все это вызывает необходимость стабилизации растворов солей слабых оснований и сильных кислот добавлением 0,1 н. хлористоводородной кислоты. Количество кислоты, необходимое для стабилизации растворов, варьирует в зависимости от свойства препарата, но, как правило, не зависит от концентрации стабилизируемого раствора, так как основным назначением добавляемой кислоты является создание оптимальных границ pH раствора. Обычно 1 л инъекционного раствора стабилизируют 10 мл 0,1 н. раствора хлористоводородной кислоты. Так стабилизируют растворы стрихнина нитрата (pH 3.0 - 3.7), 1% раствора морфина гидрохлорида (pH 3.0 - 3.5). Растворы лобелина гидрохлорида стабилизируют добавлением 15 мл 0,1 н. раствора кислоты на 1 л, а растворы скополамина гидробромида (pH 2.8 - 3.0) - 20 мл 0,1 н. кислоты на 1 л.

Стабилизация растворов солей сильных оснований и слабых кислот

К числу таких препаратов относятся натрия нитрит, натрия тиосульфат, кофеин-бензоат натрия. Их водные растворы вследствие гидролиза имеют щелочную реакцию. Для подавления гидролиза добавляют щелочь. Согласно указанию ГФ ХI, растворы натрия нитрита стабилизируют добавлением 2 мл 0,1 н. раствора едкого натра на 1 л раствора. Раствор натрия тиосульфат, имея среду, близкую к нейтральной, при незначительном понижении pH разлагается с выделением серы, поэтому его стабилизируют добавлением 20 г натрия гидрокарбоната на 1 л раствора (pH 7,8 - 8,4).Для стабилизации кофеина-бензоата натрия добавляют 4 мл 0,1 н. раствора едкого натра на 1 л раствора.

Стабилизация растворов легкоокисляющихся веществ

Для стабилизации растворов легкоокисляющихся веществ различные антиоксиданты. К ним относятся восстановители и отрицательные катализаторы.

Восстановители, обладая большим окислительно-восстановительным потенциалом, легче окисляются, чем стабилизируемые ими препараты. К данной группе относятся, например, натрия сульфит, бисульфит и метабисульфит, ронгалит (натрия формальдегидсульфоксилат), аскорбиновая кислота, унитиол и др. За рубежом применяют также тиомочевину, параминофенол, ангидрид метиаминоуксусной кислоты (саркозиновый ангидрид) и др.

Отрицательные катализаторы образуют комплексные соединения с ионами тяжелых металлов, катализирующих нежелательные окислительные процессы. К этой группе относятся комплексоны: ЭДТУ - этилендиаминтетрауксусная кислота, трилон Б - динатриевая соль этилендиаминтетрауксусной кислоты и др.

Добавление антиоксидантов необходимо для приготовления растворов аскорбиновой кислоты для инъекций, которая легко окисляется с образованием неактивной 2,3-дикетогулоновой кислоты. В кислых растворах (при pH 1,0 - 4,0) аскорбиновая кислота разлагается с образованием альдегида фурфурола, что обусловливает желтую окраску разложившихся растворов. Растворы аскорбиновой кислоты готовят в присутствии натрия гидрокарбоната. В качестве антиоксиданта добавляют натрия сульфит безводный 0,2% или натрия метабисульфит 0,1%. Растворы готовят на воде, насыщенной углекислотой, и стерилизуют при 100 гр. С текучим паром в течение 15 мин (ГФ Х, ст. 7).

К легкоокисляющимся препаратам относятся производные фенотиазина аминазин, дипразин. Водные растворы указанных веществ легко окисляются даже при кратковременном воздействии света с образованием продуктов, окрашенных в темно-красный цвет (образуются оксиды, карбонильные производные и другие продукты окисления. Для получения стабильных растворов аминазина и дипразина на 1 л раствора добавляют по 1 г безводного натрия сульфита и метабисульфита, 2 г аскорбиновой кислоты и 6 г натрия хлорида (в асептических условиях, без проведения тепловой стерилизации).

Легко окисляются многие производные ароматических аминов: ПАСК, новокаинамид, стрептоцид растворимый и др. Растворы этих препаратов, окисляясь, образуют более ядовитые окрашенные продукты вследствие образования хинонов, хинониминов и продуктов их конденсации. Для получения стабильных жидкостей растворы стрептоцида растворимого стабилизируют натрия сульфитом (2 г на 1 л), растворы новокаинамида - натрия метабисульфитом (5г на 1 л), 3% растворы натрия пара-аминосалицилата - ронгалитом (5 г на 1 л).

Растворы адреналина г/хл и гидротартрата легко окисляются вследствие содержания фенольных гидроксилов с образованием адренохрома. ГФ Х (ст. 616 и ст. 26) приводит прописи, в которых указаны стабилизаторы и режим стерилизации при приготовлении растворов указанных препаратов.

Растворы глюкозы сравнительно нестойки при длительном хранении. Основным фактором, определяющим устойчивость глюкозы в растворе, является pH среды. При pH 1,0 - 3,0 в растворах глюкозы образуется альдегид оксиметилфурфурол, вызывающий окрашивание раствора в желтый цвет. При pH 3,0 - 5,0 реакция разложения замедляется, а при pH выше 5,0 разложение оксиметилфурфурола снова усиливается. Повышение pH обусловливает разложение с разрывом цепи люкозы. Среди продуктов разложения найдены следы уксусной, молочной, муравьиной, глюконовой кислот. Следы тяжелых металлов (Cu, Fe) ускоряют процесс разложения. Оптимальное значение pH раствора глюкозы 3,0 - 4,0. Для получения стойких растворов глюкозы их рекомендуется предварительно обработать активированным углем (0,4%) для удаления железа и окрашенных продуктов. Затем растворы стабилизируют, фильтруют и стерилизуют при С текучим паром 60 мин или при 119-121С - 8 мин при объеме до 100 мл.

ГФ Х предписывает стабилизировать растворы глюкозы (независимо от их концентрации) натрия хлоридом 0,26 г на 1 л и 0,1 н. раствором хлористоводородной кислоты до pH 3,0 - 4,0. В условиях аптеки для удобства работы стабилизатор изготавливают по следующей прописи: натрия хлорида - 5,2 г, хлористоводородной кислоты разведенной - 4,4 мл, воды для инъекций - до 1 л. Этого стабилизатора берут 5%.

Механизм стабилизирующего действия, по мнению некоторых авторов, заключается в том, что натрия хлорид образует по месту альдегидной группы глюкозы комплексные соединения. Комплекс этот непрочен, и натрия хлорид, перемещаясь от одной молекулы к другой, защищает альдегидные группировки, тем самым подавляя окислительно-восстановительные реакции. Хлористоводородная кислота нейтрализует щелочь, выделяемую стеклом, и создает оптимальное значение pH раствора.

Существует другая теория, объясняющая сложность протекающих процессов. Как известно, в твердом состоянии глюкоза находится в циклической форме. В растворе происходит частичное раскрытие колец с образованием альдегидных групп, причем между ациклической и циклической формами устанавливается подвижное равновесие. Добавление натрия хлорида создает в растворе условия, способствующие сдвигу равновесия в сторону образования более устойчивой к окислению циклической формы. Имеются также указания о взаимодействии натрия хлорида с некоторыми формами глюкозы с образованием стойких двойных комплексных солей.

Стабилизаторы

Концентрация раствора, %

Стабилизатор и его масса, г/л, или объем, мл/л

рН раствора

Апоморфина гидрохлорида

Анальгин 0,5 г Цистеин 0,2 г Раствор кислоты хлористоводородной 0,1М - 10 мл

Атропина сульфата

0,05; 0,1; 1; 2,5; 5

Растворы кислоты хлористоводородной 0,1М - 10 мл

Викасола

Натрия метабисульфит (1,0 г) или натрия бисульфит (2,0 г) раствор кислоты хлористоводородной 0,1М - 1,84 мл

Глюкозы безводной

5; 10; 20; 25; 40

Растворы кислоты хлористоводородной 0,1М - до рН 3,0 - 4,1 Натрия хлорид 0,26 г

Натрия гидрокарбонат 6,0 г

нет данных

Кислоты аскорбиновой

Натрия метабисульфит 2,0 г


Дибазола

Раствор кислоты хлористоводородной 0,1 М - 10 мл

Натрия тиосульфат 0,5 г

Кислоты аскорбиновой

Нария гидрокарбонат 23,85 г; 47,70 г Натрия сульфит безводный 2,0 г

Кофеина-натрия бензоата

Раствор натрия гидроксида 0,1 М - 4 мл

Натрия гидрокарбоната

Трилон Б: 0,1г 0,2 г

Натрия нитрита

Раствор натрия гидроксида 0,1 М - 2 мл

Натрия пароаминосалицилата

Натрия сульфит 5,0 г

Натрия салицилата

Натрия метабисульфит 1,0 г

Натрия тиосульфата

Натрия гидрокарбонат 20,0 г

Новокаинамида

Натрия метабисульфит 5,0 г

Новокаина

0,25; 0,5; 1 2; 5; 10

Раствор кислоты хлористоводородной 0,1М: 3 мл; 4 мл; 9мл Натрия тиосульфат 0,5 г Раствор кислоты хлористоводородной 0,1 М: 4 мл; 6 мл; 8 мл

3,8 - 4,5 4,0 - 5,0

Рингер-ацетата

Натрия хлорид 0,526 г Натрия ацетат 0,410 г Кальция хлорид 0,028 г Магния хлорид 0,014 г Калия хлорид 0,037 г

Раствор кислоты хлористоводородной 8% - 0,2 мл

Солюзида растворимого

Динатриевая соль этилендиаминтетрауксусной кислоты 0,1 г

Скополамина гидробромида

Совкаина

Раствор кислоты хлористоводородной 0,1М - 6 мл

Спазмолитина

Раствор кислоты хлористоводородной 0,1М - 20 мл

Сульфацил-натрия

Натрия метабисульфит 3,0 г Раствор натрия гидроксида 1М - 18 мл

Стрептоцида растворимого

Натрия сульфит 2,0 г или натрия тиосульфат 1,0 г

Стрихнина нитрата

Раствор кислоты хлористоводородной 0,1М - 10 мл

Тамина бромида Тиамина хлорида

Унитиол 2,0 г



Этазол-натрия

Натрия сульфит безводный 3,5 г Натрия гидроцитрат 1,0 г; 2,0 г


4 Полный химический анализ

После изготовления раствора для инъекций и до его стерилизации он обязательно подвергается полному химическому контролю, включающий качественный и количественный анализ входящих в него компонентов, определении рН, изотонирующих и стабилизирующих веществ.

Кроме того, возможен дополнительный опросный контроль после изготовления раствора.

Результаты контроля заносятся в журнал, форма которого приведена в приложении 2 к Инструкции по контролю качества, утвержденных приказом МЗ РФ № 214 от 16 июля 1997г.

Фильтрование и фасовка растворов

Этот этап изготовления инъекционных растворов проводится только при удовлетворительных результатах полного химического анализа.

1 Фильтрование и розлив во флаконы, укупорка

Фильтрование проводится для освобождения инъекционных растворов от механических включений.

Для надежного выбора фильтровальной системы желателен анализ следующей информации о технологии очистки:

характер фильтруемой среды (наименование, ингредиенты, плотность, вязкость, концентрация);

характер загрязнений (размер частиц);

требования к фильтрату (визуальная прозрачность);

используемое оборудование и фильтроэлементы с указанием типа, марки, материала, основных эксплутационных характеристик по паспорту.

Первые порции фильтрата подвергаются повторному фильтрованию.

Фильтрование раствора сочетается с одновременным розливом его в приготовленные стеклянные флаконы. Во время фильтрования и розлива персонал не должен наклоняться над пустыми или полными флаконами. Оптимален розлив и укупорка в ламинарном потоке воздуха с использованием соответствующего оборудования.

Для фильтрования растворов для инъекций используют фильтровальные воронки со стеклянным фильтром (размеры пор 3-10 мкм). При этом используются установки двух конструкций:

Аппарат штативного типа

Аппарат карусельного типа.

Кроме того, используют установки для фильтрования и розлива жидкостей УФЖ-1 и УФЖ-2 с их помощью можно фильтровать несколько растворов одновременно.

С ориентацией на фильтрование больших количеств инъекционных растворов применяют фильтры, работающие под вакуумом по принципу «грибка» с использованием перевернутой воронки Бюнхера. На дно воронки последовательно один на другой укладывается фильтровальный материал, чем достигается более тщательное фильтрование.

В качестве фильтровального материала применятся комбинированные фильтры в сочетании с различным фильтрующим материалом (фильтровальная бумага, марля, вата, ткань хлопчатобумажная бязевой группы, бельтинг, ткани из натурального шелка).

Следует обратить внимание на то, что в настоящее время все чаще применяют метод микрофильтрации через мембранные фильтры.

Микрофильтрация - процесс мембранного разделения коллоидных растворов и микровзвесей под давлением. При этом разделению подвергаются частицы размером 0,2-10 мкм (неорганические частицы, крупные молекулы). Обычный фильтровальный материал эти частицы пропускает, что очень опасно, т.к. они капилляронепроницаемы и склонны к конгломерации.

Применение микрофильтрации позволяет освободиться от механических включений при визуальном контроле и снизить общее микробное число. Это обусловлено тем, что мембраны задерживают не только частицы, которые более размеров пор, но и частицы меньших размеров. В этом процессе важную роль играют следующие эффекты: 1) капиллярный эффект; 2) явление адсорбции; 3) электростатические силы; 4) Ван-дер-ваальсовые силы.

Наиболее часто используют фильтры зарубежных марок - МЕЛИПОР, САРТЕРИДЕ, СИНПОР и другие. Также часто используются фильтры отечественной марки ВЛАДИПОР, которые представляют собой мелкопористые ацетат целлюлозные пленки белого цвета, различной толщены.

Фильтрование растворов с использование мембранных микрофильтров предполагает применение мембранной установки, которые представляют из себя комплексное устройства, состоящее из мембранодержателей и другого вспомогательного оборудования.

После розлива растворов с одновременной фильтрацией флаконы укупоривают резиновыми пробками(марки смотри «Подготовка посуды и тароукупорочных средств») и подвергают первичному визуальному контролю на отсутствие механических включений в соответствии с приложением 8 к Инструкции по контролю качества лекарственных средств, изготовляемых в аптеках, утвержденным приказом № 214 МЗ РФ от 16 июля 1997г.

2 Первичный контроль на отсутствие механических включений

Под механическими включениями понимают постоянно подвижные не растворимые вещества, кроме пузырьков газа, случайно присутствующих в растворах.

Первичный контроль осуществляется после фильтрации и фасовки раствора. Просмотру подлежит каждая бутылка или флакон с раствором. При обнаружении механических включений раствор повторно фильтруют и вновь просматривают, укупоривают, маркируют и стерилизуют.

Для растворов подвергаемых мембранной микрофильтрации допускается проведение выборочного первичного контроля на отсутствие механических включений.

Для просмотра растворов должно быть специально оборудованное рабочие место, защищенное от попадания прямых солнечных лучей. Проведения контроля осуществляется с помощью «Устройства для контроля раствора на отсутствие механических включений» (УК-2), допускается использование черно-белого экрана, освещенного таким образом, чтобы исключить попадания света в глаза проверяющего непосредственно от его источника.

Контроль раствора осуществляется путем просмотра невооруженным глазом на черном и белом фонах, освещенных электрической матовой лампой в 60 Вт или лампой дневного света 20 Вт; для окрашенных растворов соответственно 100 Вт и 30 Вт. Расстояние от глаз до просматриваемого объекта должно быть 25-30 см, а угол оптической оси просмотра к направлению света около 90º. Линия зрения должна быть направлена книзу при вертикальном положении головы.

Провизор-технолог должен иметь остроту зрения равную единице. При необходимости корректируется очками.

Поверхность проверяемых бутылок или флаконов должна быть снаружи чистой и сухой.

В зависимости от объема бутылки или флакона просматривают одновременно от одной бутылки до 5 штук. Бутылки или флаконы берут в одну или обе руки за горловины, вносят в зону контроля, плавными движениями переворачивают в положение «вверх донышками» и просматривают на черном и белом фонах. Затем плавными движениями, без встряхивания переворачивают в первоначальное положение «вниз донышками» и так же просматривают на черном и белом фонах.

Время контроля соответственно составляет:

одна бутылка вместимостью 100-500 мл - 20 сек;

две бутылки вместимостью 50-100 мл - 10 сек;

от двух до пяти бутылок вместимостью 5-50 мл - 8-10 сек.

Указанное время контроля не включает времени на вспомогательные операции.

3 Укупорка и маркировка

Флаконы с растворами для инъекций, укупоренные резиновыми пробками, после удовлетворительно контроля на отсутствие механических включений, обкатывают металлическими колпачками.

Для этой цели используют аллюминевые колпачки типа К-7 с просечкой (отверстием) диаметром 12-14 мм.

После обкатки у флаконы проверяют качество укупорки: металлический колпачок не должен прокручиваться при проверки в ручную и раствор не должен выливаться при опрокидывании флакона. Затем бутылки и флаконы маркируют путем подписи, штамповки на крышке или с использованием металлических жетонов с указанием наименования раствора и его концентрации.

Стерилизация

Стерилизация - полное уничтожение в том, или ином объекте живых микроорганизмов и их спор. Стерилизация имеет большое значение при изготовлении всех лекарственных форм и особенно инъекционных. В данном случае следует стерилизовать посуду, вспомогательный материал, растворитель и готовый раствор. Таким образом, работа по изготовлению растворов для инъекций должна начинаться со стерилизации и стерилизацией заканчиваться.

ГФ XI определяет стерилизацию как процесс умерщвления в объекте или удаление из него микроорганизмов всех видов, находящихся на всех стадиях развития.

Сложность процесса стерилизации заключается, с одной стороны, в высокой жизнестойкости и большом разнообразии микроорганизмов, с другой стороны - термолабильностью многих лекарственных веществ и лекарственных форм или невозможностью по ряду причин использовать другие методы стерилизации. Отсюда, исходят требования к методам стерилизации: сохранить свойства лекарственных форм и освободить их от микроорганизмов.

Методы стерилизации должны быть удобны для использования в аптеки, особенно в аптеках ЛПУ, в рецептуре которых инъекционные растворы составляют до 60-80%.

В технологии лекарственных форм используют разные методы стерилизации: термические методы, стерилизация фильтрованием, радиационная стерилизация, химическая стерилизация.

Термическая стерилизация.

К термическим методам стерилизации относят стерилизацию паром под давлением и воздушную стерилизацию, стерилизация текучим паром исключена из ГФXI.

Воздушная стерилизация

Этот метод стерилизации осуществляется горячим воздухом в воздушном стерилизаторе при температуре 180-200ºС. При этом погибают все формы микроорганизмов за счет пирогенетического разложения белковых веществ.

Эффективность воздушной стерилизации зависит от температуры и времени. Равномерность прогрева объектов зависит от степени теплопроводности и правильности расположения внутри стерилизационной камеры для обеспечения свободной циркуляции горячего воздуха. Стерилизуемые объекты должны быть расфасованы в соответствующую тару или укупорены и свободно размещены в стерилизаторе. В связи с тем, что воздух обладает не высокой теплопроводностью, прогрев стерилизуемых объектов происходит довольно медленно, поэтому загрузка должна производится в не нагретые стерилизаторы, или когда температура внутри них не превышает 60ºС. Время, рекомендуемое для стерилизации, должно отсчитываться с момента нагрева в стерилизаторе до температуры 180-200°С.

Воздушный метод стерилизации используется для стерилизации термостойких лекарственных веществ, масел, жиров, ланолина, вазелина, воска, а также изделий из стекла, металла, силиконовой резина, фарфора, установки для стерилизации фильтрованием с фильтрами, мелкие стеклянные и металлические предметы.

Для стерилизации растворов этот метод не используют.

Паровая стерилизация

При этом методе стерилизации происходит комбинированное действие на микроорганизмы высокой температуры и влажности. Надежным методом стерилизации является стерилизация насыщенным паром при избыточном давлении, а именно: давлении 0,11 мПа (1,1 кгс/см²) и температуре 120°С или давлении0,2 мПа (2,2 кгс/см²) и температуре 132°С.

Насыщенный пар - это пар, находящийся в состоянии равновесия с жидкостью, из которой он образуется. Признаком насыщенного пара является строгая зависимость его температуры от давления.

Стерилизацию паром под давлением проводят в паровых стерилизаторах.

Стерилизация паром при температуре 120°С рекомендуется для растворов термостабильных лекарственных веществ. Время стерилизационной выдержки зависит от физико-химических свойств веществ и объема раствора.

Стерилизация инъекционных лекарственных веществ проводят в герметично укупоренных, предварительно простерилизованных флаконах.

Этим методом также стерилизуют жиры и масла в герметично укупоренных сосудах при температуре 120°С в течение 2 часов; изделия из стекла, фарфора, металла, перевязочный и вспомогательный материал (вата, марля, бинты, халаты, фильтровальную бумагу, резиновые пробки, пергамент) - время выдержки 45 мин при температуре 120°С или 20 мин при температуре 132°С.

В исключительных случаях стерилизуют при температуре ниже 120°С. Режим стерилизации должен быть обоснован и указан в частных статьях ГФ XI или другой нормативно-технической документации.

Контроль эффективности термических методов стерилизации осуществляется с помощью контрольно-измерительных приборов с термометрами, а также химическими и биологическими методами.

В качестве химических тестов используют некоторые вещества, изменяющие свой цвет или физиологическое состояние при определенных параметрах стерилизации. Например, бензойная кислота (температура плавления 122-124,5°С), сахароза (180°С) и другие вещества.

Бактериологический контроль осуществляется с помощью стерилизации объекта, осемененным тест-микробами, могут быть использованы пробы садовой земли.

Данный метод стерилизации наиболее часто используется в аптечных учреждениях для стерилизации инъекционных растворов при этом надо учитывать следующие требования:

Стерилизация должна проводится не позднее, чем 3 часа с момента изготовления раствора;

Стерилизация проводится только один раз, повторная стерилизация не допускается;

К заполненным коробкам или упаковкам должна быть прикреплена бирка с наименованием содержимого и датой стерилизации;

Проведение контроля термической стерилизации при стерилизации инъекционных растворов обязательно;

Стерилизацию имеет право проводить только человек, прошедший специальную подготовку и проверку знаний и имеющий документ удостоверяющий это.

Стерилизация фильтрованием

Микробные клетки и споры могут рассматриваться как не растворимые образования с очень малым (1-2 мкм) поперечником. Подобно другим включениям они могут быть отделены от жидкости механическим путем - фильтрованием сквозь мелкопористые фильтры. Этот метод стерилизации также включен в ГФXI для стерилизации растворов термолабильных веществ.

Радиационная стерилизация

Лучистая энергия губительно действует на клетки живых организмов, в том числе и на различные микроорганизмы. Принцип стерилизующего эффекта радиационного излучения основан на способности вызывать в живых клетках при определенных дозах поглощенной энергии такие изменения, которые неизбежно приводят их к гибели за счет нарушения метаболических процессов. Чувствительность микроорганизмов к ионизирующему излучению зависит от многих факторов: наличия влаги, температуры и др.

Радиационная стерилизация является эффективной для крупных производств.

Химическая стерилизация

Этот метод основан на высокой специфической чувствительности микроорганизмов к различным химическим веществам, что обуславливается физико-химической структурой их оболочки и протоплазмы. Механизм антимикробного действия веществ еще недостаточно изучен. Считают, что некоторые вещества вызывают коагуляцию протоплазмы клетки, другие действуют как окислители, ряд веществ влияют на осмотические свойства клетки, многие химические факторы вызывают гибель микробной клетки благодаря разрушению окислительных и других ферментов.

Химическую стерилизацию применяют для стерилизации посуды, вспомогательных средств, изделий из стекла, фарфора, металла, применяют также для дезинфекции стен и оборудования.

Контроль стерильности инъекционных лекарственных препаратов, изготовленных в аптеки, по приказу МЗ РФ № 309 от 21 октября 1997г. осуществляется санэпиднадзором. Последний обязан не реже двух раз в квартал проводить контроль растворов для инъекций, глазных капель и воды для инъекций на стерильность; ежеквартально проводить выборочный контроль воды для инъекций и инъекционных растворов, изготовленных в аптеки, на пирогенные вещества в соответствии с требованиями ГФXI.

Контроль качества готовой продукции

Контроль качества растворов для инъекций должен охватывать все стадии их приготовления с момента поступления лекарственных веществ в аптеку и до отпуска их в виде лекарственной формы.

В соответствии с Инструкцией по контролю качества лекарственных средств, изготовляемых в аптеки, утвержденной приказом № 214 от 16 июля 1997г, в целях предупреждения поступления в аптеку некачественных лекарственных средств проводится приемочный контроль, который заключается в проверке присутствующих лекарственных средств на соответствие требованиям по показателям: «Описание», «Упаковка», «Маркировка»; в проверки правильности оформления различных документов и наличие сертификатов соответствующего производителя и другой документации, подтверждающей качество лекарственного средства. При этом на этикетке упаковки с лекарственными веществами, предназначенным для изготовления растворов для инъекций и инфузий, должно быть указано «Годен для инъекций».

В процессе изготовления должен присутствовать письменный, органолептический контроль и контроль при отпуске - обязательно; опросный, физический - выборочно и полный химический в соответствии с требованиями раздела 8 приказа № 214.

При письменном контроле, кроме общих правил оформления паспортов, следует помнить, что концентрация и объем (масса) изотонирующего и стабилизирующего вещества, добавленных в растворы для инъекций и инфузий, должны быть указаны не только в паспортах, но и на рецептах.

Опросный контроль проводиться выборочно после изготовления не более пять лекарственных форм.

Органолептический контроль заключается в проверке лекарственной формы по показаниям:

описание (внешний вид, цвет, запах);

однородность;

отсутствие видимых механических включений (в жидких лекарственных формах).

Физический контроль заключается в проверке массы или объема лекарственной формы, количества и массы отдельных компонентов, входящих в данную лекарственную форму.

При этом проверяется каждая серия раствора лекарственного препарата, требующая стерилизации, после расфасовки и до их стерилизации. При проверке также контролируется качество упаковки (аллюминевый колпачок не должен прокручиваться вручную и раствор не должен выливаться при опрокидывания флакона).

Все растворы для инъекций и инфузий до стерилизации подвергаются полному химическому контролю обязательно, включая определение величины рН, изотонирующих и стабилизирующих веществ.

Все стадии изготовления растворов для инъекций и инфузий должны отражаться в журнале регистрации результатов контроля отдельных стадий изготовления растворов для инъекций и инфузий.

1 Вторичный контроль на отсутствие механических включений

После стерилизации закупоренные растворы подвергаются вторичному контролю на отсутствие механических включений.

«Первичный контроль на отсутствие механических включений». При этом также одновременно проводится проверка на полноту заполнения флакона и качества укупорки.

2 Полный химический контроль

Для проведения полного химического контроля после стерилизации отбирают один флакон от каждой серии препарата. За серию считают продукцию, полученную в одной емкости.

Полный химический контроль включает в себя, помимо проведения качественного и количественного определения действующих веществ, также и определение величины рН. Стабилизирующие и изотонирующие вещества проверяются в случаях, предусмотренных действующей нормативной документацией (Методическими указаниями).

3 Бракераж

Стерильные растворы считаются забракованными при несоответствии требованиям нормативной документации по внешнему виду, величине рН; подлинности и количественному содержанию входящих веществ; наличию видимых механических включений; недопустимым отклонениям от номинального объема раствора; нарушения фиксирующей укупорки; нарушениям действующих требований к оформлению лекарственных средств, предназначенных к отпуску.

Оформление

Лекарственные вещества ля инъекций, как и другие лекарственные формы, оформляются этикеткой. В данном случае этикетки должны иметь синюю сигнальную полосу на белом фоне и четкие надписи: «Для инъекций», «Стерильно», «Беречь от детей», отпечатанные типографическим способом. Размеры этикеток не должны превышать 120 ›‹ 50 мм. Кроме того, этикетки должны иметь следующее:

месторасположение учреждения изготовителя;

наименование учреждения изготовителя;

№ больницы;

наименование отделения;

способ применения (внутривенно, внутривенно (капельно), внутримышечно);

дата приготовления____;

срок годности____;

анализ №___;

приготовил________;

проверил___________;

оптустил___________.

V. Практическая часть

Практическая часть работы была выполнена на основании данных, полученных в период прохождения мною производственной практики.

Приготовление лекарственных форм для инъекций осуществляется в рецептурно-производственном отделе.

Характеристика условий изготовления инъекционных растворов.

Изготовление инъекционных растворов осуществляется в изолированном помещении асептического блока.

Ассистентская асептического блока отделена от других производственных помещений шлюзом, но при этом соединена окнами с кабинетом провизора-аналитика и автоклавной.

В шлюзе расположены шкафы для одежды персонала и для хранения биксов с комплектами стерильной одежды, зеркало, раковина, электросушилка, а также инструкции по правилам обработки рук, последовательности переодевания и правилам поведения в асептическом блоке.

Помещение ассистентской-асептической отделано с использованием материалов, способных выдержать частые дезинфицирующие обработки. Пол покрыт неглазированной керамической плиткой, пол и стены отделаны пластиковым покрытием, что удовлетворяет требованиям приказа № 309 от 21 октября 1997г.

Пластиковые окна, защищенные воздушными фильтрами, обеспечивают проникновение в помещение достаточного количества естественного света. Искусственный свет создают люминесцентные лампы дневного света.

В помещении присутствует приточно-вытяжная вентиляция с преобладанием притока над вытяжкой.

Перед работой в асептическом блоке производится обеззараживание воздуха с помощью настенных бактерицидных неэкранированных ламп, установленных на реле времени (с 6.00 до 8.00).

Работа персонала осуществляется в комплекте стерильной одежды, который состоит из бахил, брючного костюма, одноразовой маски и шапочки. Обработка рук производится спиртовым раствором хлоргексидина биглюконата 0,5%.

В конце смены обязательно проводится уборка помещения с использованием дезсредств. В качестве дезинфицирующих средств используют 0,75% раствор хлорамина Б с 0,5% раствором моющего средства. Уборка осуществляется по правилам, регламентирующимся приказом № 309 от 21 октября 1997г.: сначала моют стены плавными движениями сверху вниз от окна к двери, а затем моют и дезинфицируют мебель и оборудование. Один раз в неделю производится генеральная уборка помещения, для этого помещение освобождают от оборудования.

Оборудование асептического блока

Для облегчения работы специалистов в асептическом блоке применяются средства малой механизации.

Розлив и фильтрование растворов осуществляется вакуумным хирургическим отсасывателем УС-НС-11, снабженным двумя (воздушным и механическим) погруженными бактериальными фильтрами из нержавеющей стали.

Для отвешивания сыпучих веществ используют весы ТУ-64-1-3849-84 до 1 кг, для этой же цели применяются и ручные весы до 100г, до 20 г, до 5г и до 1 г.

С помощью устройства для контролирования инъекционных растворов УК-2 осуществляется первичный контроль растворов на отсутствие механических включений.

Обкатка флаконов, емкостью 250 и 500 мл, проводится посредством полуавтоматов закаточных ЗПУ-00 ОПС (производительность труда 1000 фл/ч) и ПЗР (1440 фл/ч). Пенницилинки обкатывают с помощью приспособления для отжима колпачков ПОК-1.

Стерилизация растворов осуществляется в трех автоклавах ГК-100-3М.

Получение воды для инъекций и проверка её качества

Воду для инъекций получают посредством аквадистилляторов ДЭ-25 и

АЭ-25, снабженных сепараторами, препятствующие прохождению капелек воды в конденсационную камеру.

Дистилляция воды осуществляется в отдельном помещении. Перед началом работы 15 мин проводят пропаривание аквадистиллятора при закрытых вентилях подачи воды в аквадистиллятор и холодильник. Первые порции полученной воды в течение 15-20 мин сливают.

Воду для инъекций собирают в чистые простерилизованные баллоны с четкой надписью «Вода для инъекций» и указанием номера баллона; на баллонах имеется бирка, где указана дата стерилизации. Кроме того, имеется этикетка с указанием того, что содержимое баллонов не простерилизовано, дата, № химического анализа и подпись проводившего анализ.

Перед поступлением воды в асептический блок берется проба из каждого баллона для анализа. Провизор-аналитик проводит испытание воды для инъекций на отсутствие хлоридов, сульфатов, солей кальция, а также на отсутствие восстанавливающих веществ, солей аммония и углерода диоксида в соответствие с требованиями действующей ГФ.

Результаты контроля воды очищенной и воды для инъекций регистрируют в журнале, форма которого приведена в приложении 3 к инструкции приказа МЗ РФ №214.

Наиболее часто в аптеке осуществляется приготовление следующих прописей:

Rp.: Sol. Novocaini 0,25% - 200 ml 10 фл..S. Внутримышечно.

Приготовление ведут массо-объемным методом: в мерной посуде в ⅔ объемах воды растворяют рассчитанное количество новокаина и стабилизатора, а затем доводят водой до нужного объема.

В качестве стабилизатора используют 0,1 н. раствор кислоты хлороводородной в соотношение на 1 литр раствора новокаина: 0,25% - 3 мл,

Добавление данного количества кислоты хлороводородной снижает рН среды до 3,8-4,5, что соответствует прописи, указанной в приложении приказа МЗ РФ № 214 от 16 июля 1997г.

В данном случае рассчитываем объем раствора: 200 * 10 = 2000 мл.

Рассчитываем массу новокаина:

Рассчитываем объем стабилизатора: 3мл в 1 л,

Х мл в 2 л.

Исходя из расчетов, готовим раствор. В емкость на 2 л набираем ⅔ объема воды для инъекций, растворяет в ней 5 г новокаина, перемешиваем. Затем добавляем 6 мл 0,1 н раствора кислоты хлороводородной, приготовление которого см. «Стабилизация растворов». Доводим раствор водой для инъекций до нужного объема и вновь перемешиваем, отдаем раствор на химический анализ.

Rp.: Sol. Nаtrii chloridi 0,9% - 200 ml 10 фл..S. Внутривенно.

С целью разрушения пирогенных веществ порошок натрия хлорид перед приготовлением раствора прокаливают в воздушном стерилизаторе при температуре 180 С в течении 2 часов с толщиной слоя не более 2 см, после чего посуду закрывают и используют в течении 24 часов. Данные о прокаливании заносятся в журнал.

Исходя из расчетов, готовим раствор. В емкость на 2 л набираем ⅔ объема воды для инъекций, растворяет в ней 18 г натрия хлорида, перемешиваем. Доводим раствор водой для инъекций до нужного объема и перемешиваем, отдаем раствор на химический анализ.

Стабилизация в данном случае не требуется, т. к. вещество является солью, образованную сильной кислотой и сильным основанием.

После получения удовлетворительных результатов анализа раствор фасуем с одновременной фильтрацией с помощью вакуумного хирургического отсасывателя УС-НС-11, подвергаем растворы первичному контролю на отсутствие механических включений, укупориваем резиновыми пробками и обкатываем колпачками. Один флакон отправляем на бактериальный анализ с указанием на этикетке того, что содержимое не простерилизовано, № серии и времени начала изготовления раствора.

Затем раствор стерилизуем в стерилизаторе паром под давление при температуре 120 С в течение 12 минут. После вторичного контроля на отсутствие механических включений и повторного химического анализа оформляем флаконы к отпуску.

Состав и технология раствора, соответствует прописи, указанной в приложении приказа МЗ РФ № 214 от 16 июля 1997г.

Rp.: Sol. Kalii chloridi 3% - 200 ml 10 фл..S. Внутривенно (капельно).

Приготовление растворов ведут массо-объемным методом.

Исходя из расчетов, приготавливаем раствор. В емкость на 2 л набираем ⅔ объема воды для инъекций, растворяет в ней 60 г калия хлорида, перемешиваем. Доводим раствор водой для инъекций до нужного объема и вновь перемешиваем, отдаем раствор на химический анализ.

После получения удовлетворительных результатов анализа раствор фасуем с одновременной фильтрацией с помощью вакуумного хирургического отсасывателя УС-НС-11, подвергаем растворы первичному контролю на отсутствие механических включений, укупориваем резиновыми пробками и обкатываем колпачками.

Затем раствор стерилизуем в стерилизаторе паром под давление при температуре 120 С в течение 12 минут. После вторичного контроля на отсутствие механических включений и повторного химического анализа оформляем флаконы к отпуску.

Rp.: Sol. Natrii hydrocarbonatis 4% - 180 ml 20 фл..S. Внутривенно

Для приготовления растворов используют натрия гидрокарбонат, соответствующий требованиям ГОСТа 4201-79 квалификации х.ч. и ч.д.а. В процессе приготовления раствора, натрия гидрокарбонат подвергается гидролизу с образованием натрия карбоната и углекислого газа, что в свою очередь приводит к увеличению рН раствора. В связи с этим, целесообразно соблюдать условия, препятствующие потере углекислоты: растворение препарата проводить при температуре не выше 20 С, в закрытом сосуде, избегая при этом сильного взбалтывания.

Приготовление растворов ведут массо-объемным методом.

Исходя из расчетов, приготавливаем раствор. В емкость на 5 л набираем ⅔ объема воды для инъекций, растворяет в ней 144 г натрия гидрокарбоната, осторожно перемешиваем. Доводим раствор водой для инъекций до нужного объема и отдаем раствор на химический анализ.

После получения удовлетворительных результатов анализа раствор фасуем с одновременной фильтрацией с помощью вакуумного хирургического отсасывателя УС-НС-11, При фасовки флаконы заполняют на ⅔ объема, чтобы при стерилизации не было разрыва склянок. Подвергаем растворы первичному контролю на отсутствие механических включений, при этом строго запрещается взбалтывание флакона. Затем укупориваем растворы резиновыми пробками и обкатываем колпачками. Один флакон отправляем на бактериальный анализ с указанием на этикетке того, что содержимое не простерилизовано, № серии и времени начала изготовления раствора.

Затем раствор стерилизуем в стерилизаторе ГК-100-3М паром под давление при температуре 120 С в течение 12 минут. Во избежания разрыва флаконов из-за выделения углекислого газа разгрузку стерилизатора следует проводить не ранее, чем через 20-30 мин после того, как давление внутри стерилизационной камеры упадет до нуля. После вторичного контроля на отсутствие механических включений и повторного химического анализа оформляем флаконы к отпуску.

Состав и технология раствора, соответствует требованиям, предъявляемым к раствору приказом МЗ РФ № 214 от 16 июля 1997г.

Rp.: Sol. Calcii chloridi 1% - 200 ml 100 фл..S. Внутривенно

Приготовление растворов ведут массо-объемным методом.

Исходя из расчетов, приготавливаем раствор. В емкость на 2 л набираем ⅔ объема воды для инъекций, растворяет в ней 200г кальция хлорида, перемешиваем. Доводим раствор водой для инъекций до нужного объема и вновь перемешиваем, отдаем раствор на химический анализ.

Стабилизация в данном случае не требуется, т. к. вещество является солью, образованной сильной кислотой и сильным основанием.

После получения удовлетворительных результатов анализа раствор фасуем с одновременной фильтрацией с помощью вакуумного хирургического отсасывателя УС-НС-11, подвергаем растворы первичному контролю на отсутствие механических включений, укупориваем резиновыми пробками и обкатываем колпачками.

Затем раствор стерилизуем в стерилизаторе ГК-100-3М паром под давление при температуре 120 С в течение 12 минут. После вторичного контроля на отсутствие механических включений и повторного химического анализа оформляем флаконы к отпуску.

Состав и технология раствора, соответствует прописи, указанной в приложении приказа МЗ РФ № 214 от 16 июля 1997г.

Анализ экстемпоральной рецептуры

Промышленность выпускает следующие аналоги инъекционных растворов, изготовляемых в аптеки:

Раствор лекарственного вещества

Аналог, выпускаемый промышленностью

Раствор новокаина 0,25% - 200 мл

Раствор натрия гидрокарбоната 4% - 180 Раствор натрия гидрокарбоната 2% - 100

Только таблетки по 500 мг №10

Раствор натрия хлорида 0,9% - 200 мл

Раствор калия хлорида 3% - 200 мл

Раствор калия хлорида 4% - 10 мл в амп. №10

Раствор новокаина 1% - 200 мл

Раствор новокаина 1% - 10 мл в амп. №10

Раствор кальция хлорида 1% - 200 мл

Раствор кальция хлорида 1% - 10 мл в амп. №10

Раствор натрия хлорида 10% - 200

Раствор натрия хлорида 10% - 200 мл

Раствор глюкозы 5% - 200 мл

Раствор глюкозы 5% - 200 мл


Из таблицы видно, что не на все инъекционные лекарственные формы, изготовляемые в аптеке, есть промышленные аналоги.

Растворы новокаина, кальция хлорида выпускаются в ампулах, что не всегда удобно при их использовании в ЛПУ. Растворы калия хлорида необходимой концентрации не выпускаются, а официнальной лекарственной формы раствора натрия гидрокарбоната вообще не существует.

Следовательно, ни одно ЛПУ не может обойтись без инъекционных лекарственных форм, изготовляемых в аптеках.

Сроки годности большинства инъекционных растворов варьируются от 20 до 30 дней, что позволяет приготавливать их в качестве внутриаптечной заготовки во флаконах под обкатку, что и делается в аптеке с ориентацией на спрос инъекционных растворов в отделениях ЛПУ.

VI. Экспериментальная часть

Объекты: Натрия хлорид раствор для инфузий 0,9% 200 мл

Материалы: чашка Петри, пробирки, колба, пипетка.

Цель: Овладеть методикой определения стерильности инъекционного раствора.

Задача: Сравнить микробиологические показатели и оценить качество 2-ух растворов, учитывая, что один из них изготовлен без соблюдения технологии изготовления (отсутствует стадия стерилизации).

Приготовление раствора.

Rp.: Sol. Nаtrii chloridi 0,9% - 200 ml 2 фл

D.S. Внутривенно.

С целью разрушения пирогенных веществ порошок натрия хлорид перед приготовлением раствора прокаливаем в воздушном стерилизаторе при температуре 180 С в течении 2 часов с толщиной слоя не более 2 см, после чего посуду закрываем и используем только в течении 24 часов. Данные о прокаливании заносим в журнал. Приготовление растворов ведем массо-объемным методом.


Исходя из расчетов, готовим раствор. В емкость на 500 мл отмериваем ⅔ объема воды для инъекций, растворяем в ней 3,6 г натрия хлорида, перемешиваем. Доводим раствор водой для инъекций до нужного объема и перемешиваем, отдаем раствор на химический анализ.

Стабилизация в данном случае не требуется, т. к. вещество является солью, образованная сильной кислотой и сильным основанием.

Фильтруем с помощью УС-НС-11, подвергаем растворы первичному контролю на отсутствие механических включений, укупориваем резиновыми пробками и обкатываем колпачками.

Один флакон (А) отправляем на бактериальный анализ с указанием на этикетке того, что содержимое не простерилизовано, № серии и времени начала изготовления раствора.

Другой флакон (Б) стерилизуем в стерилизаторе паром под давление при температуре 120 С в течение 12 минут.

2. Определение стерильности раствора натрия хлорида изотонического

Флаконы с исследуемым раствором отправляем в термостат до посева, и выдерживаем 3 суток при 37С для выявления споровых форм микроорганизмов, которые в течение этого времени переходят в вегетативные. Далее из каждого флакона для выявления аэробов производим высев по 2 мл в 5 флаконов с 50 мл мясопептонного бульона с глюкозой.

Для выявления анаэробов производим высев по 0,5 мл в 4 пробирки со средой Китта-Тароцци. Для выявления плесневых грибов и дрожжей производим высев по 0,5 мл в 4 пробирки с жидкой средой Сабуро.

Засеянные среды выдерживаем в термостате: при 37С - 3 флакона МПБ с глюкозой, 4 пробирки со средой Китта-Тароцци; при 24С-2 флакона МПБ с глюкозой, 4 пробирки со средой Сабуро. Пробы выдерживают в течение 8 суток при ежедневном просмотре.

3. Результаты микробиологического исследования

При визуальном осмотре сред, засеянных раствором А (изот. р-р натрия хлорида изотонического, не прошедший стерилизацию) наблюдаем:

Флаконы с мясопептонным бульоном с глюкозой.

Раствор мутный, на дне флаконов белый хлопьевидный осадок.

Пробирки со средой Китта-Тароцци.

Раствор мутный, непрозрачный, с осадком.

Пробирки со средой Сабуро. Раствор прозрачный, без осадка и мути.

При визуальном осмотре сред, засеянных раствором Б (стерильный раствор натрия хлорида изотонический), мы видим, что помутнение и наличие осадка отсутствует.

Заключение

В первом и во втором случаях, мы наблюдали изменения, которые свидетельствуют о росте микробной культуры. В третьем случае (среда Сабуро), раствор остался неизменным, что говорит об отсутствии плесневых грибов и дрожжей.

Все препараты, выпускаемые для инъекций, должны быть стерильными. Стерильность лекарственных средств достигается соблюдением санитарных условий изготовления и режима стерилизации, установленных Государственной фармакопеей РФ или соответствующими Техническими условиями.

Инъекционные растворы являются одной из наиболее важных лекарственных форм, изготовляемых в аптеке. Приготовление этих растворов требует особого внимания и тщательного контроля качества. В аптеке изготавливаются инъекционные лекарственные формы, большинство из которых не выпускаются промышленностью, что крайне необходимо для многих отделений ЛПУ. Инъекционные растворы готовятся в условиях, соответствующих всем требованиям приказа МЗ РФ № 309 от 21 октября 1997г. Изготовление растворов для инъекций осуществляется в максимально удобных и комфортных условиях асептического блока, согласно графика работы. Провизор-аналитик тщательно контролирует процесс приготовления инъекционных растворов, согласно приказу МЗ РФ №214 от 16 июля 1997г.

Для облегчения работы специалистов на оснащение аптеки имеются различные средства малой механизации. Аптека соответствует стандарту по всем требованиям нормативной документации и выполняет все рекомендации МЗ.

Используемая литература

инъекционный раствор лекарственный

1. Технология лекарственных форм. учеб. для студ. высш. учеб. заведений; под ред. И.И. Краснюка, Г.В. Михайловой. - М.:Издательский центр «Академия»,2006.-592с.

Приказ МЗ РФ №309 от 21.10.1997 «Об утверждении инструкции по санитарному режиму аптек»

Приказ МЗ РФ №214 от 16.07.1997 «О контроле качества ЛС в аптеках».

В.М. Грецкий, В.С. Хоменок, Руководство к практическим занятиям по технологии лекарств - Мед., Москва, 1984

Государственная фармакопея издание X, XI издания

6. Технология лекарственных форм. учеб. для студ. высш. учеб. заведений; под ред. И.И. Краснюка, Г.В. Михайловой. - М.:Издательский центр «Академия»,2006.-592с.

7. Учебно-методическое пособие к практическим занятиям по аптечной технологии лекарственных средств (часть 3, 4) - Смоленск: СГМА, 2006. Лосенкова С.О

Основы фармацевтической биотехнологии: Учебное пособие/Т.П. Прищеп, В.С. Чучалин.-Ростов н/Д.: Феникс; Изд-во НТЛ, 2006.- 256 с.

Микробиология, В.С. Дукова Издательство 2007 274 с.

Глава 5. Лекарственные средства для парентерального применения

5.13. Особенности производства некоторых инъекционных лекарственных форм

Приготовление инъекционных растворов, не подвергающихся тепловой стерилизации. Соблюдение всех условий асептики особенно важно при производстве лекарственных препаратов для Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекций , не подвергающихся тепловой Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерилизации . Это относится к приготовлению Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекционных растворов из Термолабильный (лат. thermolabilis , от thermo - тепло, labilis - непостоянный) неустойчивый к действию тепловой энергии; которой изменяется при нагревании">термолабильных веществ (барбамил, адреналина гидрохлорид, эуфиллина) или веществ, обладающих выраженной бактерицидной активностью (аминозин, дипразин, гексаметилентетрамин и др.).

Растворы гексаметилентетрамина при обычной температуре сравнительно устойчивы и обладают бактерицидным действием. При повышении же температуры происходит гидролиз гексаметилентетрамина с образованием формальдегида и аммиака, поэтому приготовление его 40% раствора проводят в асептических условиях (1 класс чистоты), без тепловой Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерилизации . Лекарственное вещество, используемое для приготовления Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекционного раствора, должно быть более высокого качества, чем Государственная фармакопея (ГФ) – фармакопея, находящаяся под государственным надзором. ГФ является документом общегосударственной законодательной силы, его требования обязательны для всех организаций данного государства, занимающихся изготовлением, хранением и применением лекарственных средств, в том числе растительного происхождения">фармакопейный . Он не должен содержать аминов, солей аммония и параформа. Если нет сорта «для Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекций », то гексаметилентетрамин подвергают специальной очистке.

Важное значение в технологии приготовления Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекционных растворов, не подвергающихся тепловой Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерилизации играет процесс Фильтрация – разделение веществ с использованием полупроницаемых мембран (методы обратного осмоса и ультрафильтрации), напр., очистка ВМС от минеральных солей">фильтрования через бактериальные фильтры, при котором микроорганизмы удаляются из раствора, тем самым обеспечивается его Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильность и Пирогенность – наличие в растворе пирогена экзогенного (бактериальные) и эндогенного (лейкопирогены)">апирогенность . Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">Стерильная Фильтрация – разделение веществ с использованием полупроницаемых мембран (методы обратного осмоса и ультрафильтрации), напр., очистка ВМС от минеральных солей">фильтрация достигается использованием глубинных и мембранных фильтров.

Лиофилизированные формы парентерального назначения. В настоящее время расширяется производство лиофилизированных препаратов.

Лиофилизация (сублимация) - один из эффективных путей повышения Стабилизация – процесс обеспечения сохранения основных физико-химических и фармакологических свойств лекарственных форм на период сроков их хранения, установленных нормативно-технической документацией">стабильности малоустойчивых и Термолабильный (лат. thermolabilis , от thermo - тепло, labilis - непостоянный) неустойчивый к действию тепловой энергии; которой изменяется при нагревании">термолабильных лекарственных веществ, таких как антибиотики, ферменты, и другие Биологически активные вещества (БАВ) – общее название веществ, имеющих выраженную физиологическую активность. Термин объединяет вещества, оказывающее заметное стимулирующее, либо подавляющее воздействие на биохимические процессы in vivo или in vitro. К БАВ относятся ферменты, гормоны, фитогормоны, ингибиторы обменных процессов, иногда – токсические вещества (яды) и др.">биологически активные жидкости . Для некоторых препаратов это единственно возможный метод получения.

Раствор глюкозы 5, 10, 25 и 40% для Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекций (Solutio Glucosi 5, 10, 25, 40% pro injectionibus). Исходная глюкоза подвергается анализу на прозрачность и цветность ее растворов, кислотность, наличие хлоридов, сульфатов, кальция, бария. Тяжелые металлы – группа химических элементов со свойствами металлов (в том числе и полуметаллы) и значительным атомным весом либо плотностью">Тяжелых металлов допускается не более 0,0005 % при отсутствии мышьяка. Раствор получают с учетом содержания кристаллизационной воды в глюкозе двойной очисткой активированным осветляющим углем марки «А». Гидратную глюкозу растворяют при температуре 50-60 °С и добавляют уголь активированный, обработанный кислотой хлороводородной. Для удаления примесей и активирования перемешивают 10 мин и еще добавляют уголь активированный, перемешивают, фильтруют через бельтинг и бязь. Затем раствор доводят до кипения, охлаждают до температуры 60°С, добавляют уголь активированный, перемешивают 10 мин и фильтруют. К раствору добавляют стабилизатор Вейбеля (натрия хлорид и 0,1 н. раствор кислоты хлороводородной), перемешивают, анализируют и фильтруют через фильтр ХНИХФИ, ампулируют и Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерилизуют в паровом стерилизаторе при температуре 100-102°С в течение 1 ч. В растворе проверяется подлинность, цветность, значение рН среды (должно быть 3,0-4,0). 5% раствор при введении 10 мл на 1 кг массы животного должен быть Пирогенность – наличие в растворе пирогена экзогенного (бактериальные) и эндогенного (лейкопирогены)">апирогенным . Проверяется его Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильность .

В зависимости от функции, выполняемой при введении в организм, Инфузионные растворы – фармацевтические препараты для внутреннего введения в случаях потери организмом большого количества жидкостей">инфузионные растворы подразделяют на 6 групп:

  1. Гемодинамические или противошоковые препараты. Предназначены для лечения шока различного происхождения, восполнения объема циркулирующей крови и восстановления нарушений Гемодинамика , и, ж. –
    1) наука, которая изучает циркуляцию крови в организме согласно законов гидродинамики;
    2) процесс движения крови в сердечно-сосудистой системе">гемодинамики . К данной группе относятся - полиглюкин, реополиглюкин, желатиноль, реоглюман и др. Часто к противошоковым растворам добавляют этанол, бромиды, барбитураты, наркотические вещества, нормализующие возбуждение и торможение центральной нервной системы; глюкозу, активирующую окислительно-востановительные процессы организма.
  2. Дезинтоксикационные растворы. Многие заболевания и патологические состояния сопровождаются интоксикацией организма (инфекционные заболевания, обширные ожоги, почечная и печеночная недостаточность, отравление различными ядовитыми веществами и др.). Для их лечения необходимы целенаправленные дезинтоксикационные растворы, компоненты которых должны связываться с токсинами и быстро выводиться из организма. К таким соединениям относятся Поливинилпирролидон (ПВП) – биополимер, смесь амфотерных линейных полимеров с варьирующей степенью вязкости. Белый гигроскопичный порошок. Растворяется в воде, спирте, ароматических углеродах, не растворяется в эфире, алифатических углеродах. Загуститель и гелеобразователь для кремов и зубных паст. Стабилизирует пену в моющих средствах. Образует блестящие прозрачные пленки, является фиксирующим компонентом в средствах для укладки волос. В водных системах может быть модификатором вязкости. Нетоксичен. Оказывает увлажняющее и лифтинговое воздействие">поливинилпирролидон , спирт поливиниловый, гемодез, полидез неогемодез, глюконеодез, энтеродез и др.
  3. Регуляторы водно-солевого баланса и кислотно-основного равновесия. Такие растворы осуществляют коррекцию состава крови при обезвоживании, вызванной диареей, при отеках мозга, токсикозах и т.д. К ним относятся солевые Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекционные растворы 0,9% и 10% растворы натрия хлорида, растворы Рингера и Рингера-Локка, жидкость Петрова, 4,5-8,4% растворы натрия гидрокарбоната, 0,3-0,6% раствор калия хлорида и др.
  4. Препараты для парентерального питания. Они служат для обеспечения энергетических ресурсов организма, доставки питательных веществ к органам и тканям, особенно после операционных вмешательств, при коматозных состояниях больного, когда он не может принимать пищу естественным путем и т.д. Представителями данной группы являются раствор глюкозы 40%, гидролизат казеина, аминопептид, аминокровин, фибриносол, липостабил, липидин, липофундин, интролипид, аминофосфатид и др.
  5. Растворы с функцией переноса кислорода. Они предназначены для восстановления дыхательной функции крови, к ним относят перфторуглеродные соединения. Эта группа Инфузионные растворы – фармацевтические препараты для внутреннего введения в случаях потери организмом большого количества жидкостей">инфузионных препаратов находится в стадии изучения и развития.
  6. Растворы комплексного действия или полифункциональные. Эти препараты, обладающие широким диапазоном действия, могут комбинировать несколько выше перечисленных функций.

Помимо общих требований, предъявляемых к растворам для Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекций (Пирогенность – наличие в растворе пирогена экзогенного (бактериальные) и эндогенного (лейкопирогены)">апирогенность , Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильность , Стабилизация – процесс обеспечения сохранения основных физико-химических и фармакологических свойств лекарственных форм на период сроков их хранения, установленных нормативно-технической документацией">стабильность , отсутствие механических включений), к плазмозамещающим препаратам предъявляют и специфические требования. При введении в кровяное русло Инфузионные растворы – фармацевтические препараты для внутреннего введения в случаях потери организмом большого количества жидкостей">инфузионные растворы должны выполнять свое функциональное назначение, при этом полностью выводиться из организма, не кумулируя. Они не должны повреждать ткани и не нарушать функции отдельных органов. В связи с большими вводимыми объемами кровезамещающие препараты не должны быть Токсичность – вредное действие вещества, проявляется при его действии на организм">токсичными , не вызывать Сенсибилизация – повышенная специфическая чувствительность к аллергенам экзогенного и эндогенного происхождения">сенсибилизацию организма при повторных введениях, не раздражать сосудистую стенку и не вызывать эмболию. Их физико-химические свойства должны быть постоянными.

Эмульсии и суспензии для инъекций . В настоящее время в медицинской практике применяется значительное количество суспензий и эмульсий для Инъекция – введение в организм с нарушением целостности кожных покровов стерильных лекарственных препаратов в виде водных, масляных, глицериновых и др. растворов, тонких взвесей и эмульсий, которые в зависимости от места введения подразделяются на: внутрикожные, подкожные, внутримышечные, внутрисосудистые, спинно-мозговые, внутрибрюшинные, внутриплевральные, внутрисуставные и др.">инъекционного введения.

Суспензии готовят в асептических условиях Диспергирование – процесс измельчения твердых или жидких веществ в определенной среде, в результате чего образуются суспензии, эмульсии или коллоидные системы">диспергированием Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильного лекарственного вещества в Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильном профильтрованном Растворитель – индивидуальное химическое соединение или смесь, способная растворять газообразные, жидкие и твердые вещества, т. е. образовывать с ними однородные (однофазные) системы">растворителе . Для улучшения качества получаемой продукции в некоторых случаях используют Ультразвук – упругие звуковые колебания высокой частоты">ультразвуковое воздействие, которое способствует дополнительному измельчению и Диспергирование – процесс измельчения твердых или жидких веществ в определенной среде, в результате чего образуются суспензии, эмульсии или коллоидные системы">диспергированию лекарственного вещества в Растворитель – индивидуальное химическое соединение или смесь, способная растворять газообразные, жидкие и твердые вещества, т. е. образовывать с ними однородные (однофазные) системы">растворителе , а с другой стороны, придает Лекарственная форма – придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект">лекарственной форме Стерилизация – уничтожение или обезвреживание микробов и их спор в лекарственных системах, вспомогательных материалах на хирургической или лабораторной аппаратуре, инструментах, посуде и т. д. с помощью высокой температуры, химическим и др. путем. К методам стерилизации относятся: термическая стерилизация, С. ультрафиолетовым лучами, ультразвуковая С., радиоактивная С., химическая С., фильтрация с использованием микропористых материалов (фильтров, например, милипор)">стерильность . В этих условиях величина частиц уменьшается до 1-3 мкм и такие суспензии и эмульсии могут быть пригодны для введения в кровяное русло. Для повышения Стабилизация – процесс обеспечения сохранения основных физико-химических и фармакологических свойств лекарственных форм на период сроков их хранения, установленных нормативно-технической документацией">стабильности в технологии производства суспензий и эмульсий используют сорастворители, стабилизаторы, Эмульгатор – дифильное поверхностно-активное вещество которое способное ориентированно располагаться на границе раздела двух жидкостей, снижать поверхностное натяжение и препятствовать коалесценции">эмульгаторы и Консерванты – вещества, предотвращающие возможность микробной загрязненности желатиновых капсул. Рациональнее всего для этих целей использовать смесь метил- и этилпарабена (нипагин и нипазол), возможно также применение салициловой и сорбиновой кислот, некоторых их производных; прочие добавки – вещества, введение которых в состав желатиновых масс для получения оболочек капсул в ряде случаев является необходимым">консерванты .

Эмульсии для парентерального питания. Лечебное парентеральное питание применяется в случаях, когда вследствие заболевания или травмы прием пищи естественным путем невозможен или ограничен. Поступление в организм питательных веществ при парентеральном питании обеспечивается путем внутривенного введения специально предназначенных для этой цели препаратов.

Исключительно важная задача парентерального питания - восполнение белковых потребностей - осуществляется введением азотсодержащих препаратов, выпускаемых в виде белковых гидролизатов, или растворов синтетических смесей кристаллических аминокислот. Введение этих препаратов позволяет восполнить азотистые потери, но практически мало влияет на общий энергетический баланс организма.

Общие энергетические потребности организма при парентеральном питании покрываются за счет введения препаратов энергетического назначения (растворы глюкозы, других углеводов, многоатомных спиртов), среди которых важное место занимают жировые эмульсии для внутривенного введения. Препараты эмульгированных жиров для парентерального питания, по сравнению с белковыми и углеводными, отличаются наиболее высокой энергетической ценностью, что облегчает составление парентеральных рационов без повышения физиологически допустимых количеств вводимой жидкости, что наблюдается при введении растворов, содержащих углеводы.

Значение жировых эмульсий в парентеральном питании не ограничено их энергетической ценностью. Входящие в состав этих препаратов растительные жиры и фосфолипиды содержат значительное количество незаменимых полиненасыщенных жирных кислот (линолевой, линоленовой, арахидиновой), которые выполняют исключительно важную роль в обменных процесах, составляют постоянные структурные элементы клеточных мембран (мембранные липиды) и являются предшественниками тканевых - простогландинов. В состав растительных эмульгирующих жиров входят жирорастворимые витамины А, Д, Е, К. Жировые эмульсии, в связи со сказанным, в настоящее время рассматриваются как источники эссенциальных липидов для организма и как незаменимые компоненты парентерального питания.