Глюкоза в организме выполняет роль топлива. Это главный источник энергии для клеток, и способность клеток функционировать нормально во многом определяется их способностью усваивать глюкозу. Она попадает в организм с пищей. Продукты питания расщепляются в желудочно-кишечном тракте до молекул, после чего глюкоза и некоторые другие продукты расщепления всасываются, а неусвоенные остатки (шлаки) выводятся с помощью выделительной системы.

Для того, чтобы глюкоза в организме усваивалась, некоторым клеткам нужен гормон поджелудочной железы – инсулин. Инсулин принято сравнивать с ключом, который открывает глюкозе дверь в клетку, и без которого она не сможет туда проникнуть. Если инсулина нет, большая часть глюкозы остается в крови в неусвоенном виде, а клетки при этом голодают и слабеют, а затем гибнут от голода. Такое состояние называется сахарным диабетом.

Часть клеток организма является инсулинонезависимыми. Это означает, что в них глюкоза усваивается напрямую, без инсулина. Из инсулинонезависимых клеток состоят ткани мозга, красных кровяных телец и мышц – вот почему при недостаточном поступлении глюкозы в организм (то есть при голоде) человек довольно скоро начинает испытывать затруднения с умственной деятельностью, становится анемичным и слабым.

Однако гораздо чаще современные люди сталкиваются не с недостатком, а с избыточным поступлением глюкозы в организм в результате переедания. Избыток глюкозы преобразуется в гликоген, своеобразный «консервный склад» клеточного питания. Большая часть гликогена хранится в печени, меньшая часть – в скелетных мышцах. Если человек длительно не принимает пищу, запускается процесс расщепления гликогена в печени и мышцах, и ткани получают необходимую глюкозу.

Если глюкозы в организме так много, что она уже не может быть использована ни на нужды тканей, ни утилизирована в гликогеновые депо, образуется жир. Жировая ткань также является «складом», но извлечь глюкозу из жира организму гораздо труднее, чем из гликогена, этот процесс сам требует энергии, вот почему похудеть так сложно. Если нужно расщепить жир, то желательно присутствие… правильно, глюкозы, для обеспечения энергозатрат.

Этим объясняется тот факт, что диеты для похудения должны включать в себя углеводы, но не любые, а трудноусваиваемые. Они расщепляются медленно, и глюкоза в организм попадает небольшими количествами, сразу используемыми на обеспечение нужд клеток. Легкоусваиваемые углеводы вбрасывают в кровь сразу чрезмерное количество глюкозы, ее так много, что она сразу подлежит утилизации в жировые депо. Таким образом, глюкоза в организме крайне необходима, но обеспечивать организм глюкозой необходимо разумно.

Транспорт глюкозы из крови в клетки

Скорость всасывания глюкозы и галактозы гораздо выше, чем других моносахаридов.

После всасывания моносахариды покидают клетки слизистой оболочки кишечника через мембрану, обращённую к кровеносному капилляру, с помощью облегчённой диффузии. Более половины глюкозы через капилляры кишечных ворсинок попадает в кровеносную систему и по воротной вене доставляется в печень. Остальное количество глюкозы поступает в клетки других тканей.

Потребление глюкозы клетками из кровотока происходит также путём облегчённой диффузии . Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента её концентрации. Исключение составляют клетки мышц и жировой ткани, где облегчённая диффузия регулируется инсулином . В отсутствие инсулина плазматическая мембрана этих клеток непроницаема для глюкозы, так как она не содержит белки-переносчики (транспортёры) глюкозы.

Транспортёры глюкозы называют также рецепторами глюкозы. Транспортёр имеет участок связывания глюкозы на внешней стороне мембраны. После присоединения глюкозы конформация белка изменяется, в результате чего глюкоза оказывается связанной с белком в участке, обращённом внутрь клетки. Затем глюкоза отделяется от транспортёра, переходя внутрь клетки.

Способ облегчённой диффузии по сравнению с активным транспортом предотвращает транспорт ионов вместе с глюкозой, если она транспортируется по градиенту концентрации .

Всасывание моносахаридов из кишечника происходит путём облегчённой диффузии с помощью специальных белков-переносчиков (транспортёров). Кроме того, глюкоза и галактоза транспортируются в энтероцит путём вторично-активного транспорта , зависимого от градиента концентрации ионов натрия. Белки-транспортёры, зависимые от градиента Na + , обеспечивают всасывание глюкозы из просвета кишечника в энтероцит против градиента концентрации. Концентрация Na + , необходимая для этого транспорта, обеспечивается Nа + ,К + -АТФ-азой, которая работает как насос, откачивая из клетки Na + в обмен на К + .

В отличие от глюкозы, фруктоза транспортируется системой, не зависящей от градиента натрия.

Глюкозные транспортёры (ГЛЮТ) обнаружены во всех тканях. Существует несколько разновидностей ГЛЮТ, они пронумерованы в соответствии с порядком их обнаружения.

Структура белков семейства ГЛЮТ отличается от белков, транспортирующих глюкозу через мембрану в кишечнике и почках против градиента концентрации.

Описанные 5 типов ГЛЮТ имеют сходные первичную структуру и доменную организацию.

  • ГЛЮТ-1 обеспечивает стабильный поток глюкозы в мозг;
  • ГЛЮТ-2 обнаружен в клетках органов, выделяющих глюкозу в кровь. Именно при участии ГЛЮТ-2 глюкоза переходит в кровь из энтероцитов и печени. ГЛЮТ-2 участвует в транспорте глюкозы в β-клетки поджелудочной железы;
  • ГЛЮТ-3 обладает большим, чем ГЛЮТ-1, сродством к глюкозе. Он также обеспечивает постоянный приток глюкозы к клеткам нервной и других тканей;
  • ГЛЮТ-4 - главный переносчик глюкозы в клетки мышц и жировой ткани;
  • ГЛЮТ-5 встречается, главным образом, в клетках тонкого кишечника. Его функции известны недостаточно.

Все типы ГЛЮТ могут находиться как в плазматической мембране, так и в цитозольных везикулах. ГЛЮТ-4 (и в меньшей мере ГЛЮТ-1) почти полностью находятся в цитоплазме клеток. Влияние инсулина на такие клетки приводит к перемещению везикул, содержащих ГЛЮТ, к плазматической мембране, слиянию с ней и встраиванию транспортёров в мембрану. После чего возможен облегчённый транспорт глюкозы в эти клетки. После снижения концентрации инсулина в крови транспортёры глюкозы снова перемещаются в цитоплазму, и поступление глюкозы в клетку прекращается.


Перемещение глюкозы из первичной мочи в клетки почечных канальцев происходит вторично-активным транспортом, подобно тому, как это осуществляется при всасывании глюкозы из просвета кишечника в энтероциты. Благодаря этому глюкоза может поступать в клетки даже в том случае, если её концентрация в первичной моче меньше, чем в клетках. При этом глюкоза реабсорбируется из первичной мочи почти полностью (99%).

Известны различные нарушения в работе транспортёров глюкозы. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета. В то же время причиной нарушения работы транспортёра глюкозы может быть не только дефект самого белка. Нарушения функции ГЛЮТ-4 возможны на следующих этапах:

  • передача сигнала инсулина о перемещении этого транспортёра к мембране;
  • перемещение транспортёра в цитоплазме;
  • включение в состав мембраны;
  • отшнуровывание от мембраны и т.д.

Углеводы усваиваются в виде моносахаридов. Однако не все углеводы могут расщепляться до моносахаридов в пищеварительном канале человека. С позиций пищеварения углеводы деляг на неусваиваемые (негликеми- ческие) и усваиваемые (гликемические).

К неусваиваемым , или пепереваримым , углеводам относятся:

  • полисахариды - клетчатка (целлюлоза), гемицеллюлоза, пектиновые вещества, инулин;
  • олигосахариды (ФОС, ГОС), в том числе олигосахариды молока;
  • дисахариды - изомер лактозы лактулоза, поскольку она не расщепляется кишечной лактазой.

В организме человека нет ферментов, гидролизующих гликозидные связи этих углеводов, поэтому они не являются источниками энергии, а выполняют другие функции.

  • Большинство непереваримых углеводов - полисахариды с большим числом полярных групп, благодаря чему они адсорбируют шлаки, токсины и яды организма.
  • Пенереваримые полисахариды обладают волокнистой структурой, которая раздражающе действует на стенки пищеварительного канала и тем самым повышает секрецию пищеварительных соков.
  • Непереваримые углеводы улучшают перистальтику кишечника.
  • Сравнительно недавно доказана еще одна важнейшая функция непереваримых углеводов - пребиотическая. Термин «пребиотики », т.е. буквально предшествующие, способствующие развитию микроорганизмов (в данном случае кишечника), был предложен в 1965 г. исследователями Лилли и Стилвелом. Установлено, что если непереваримые углеводы присутствуют в кишечнике, то они используются полезной микрофлорой (бифидо- и молочнокислыми бактериями) как источник питания, а ее рост и развитие значительно улучшаются.

Деградация непереваримых углеводов под действием кишечной микрофлоры протекает с образованием низкомолекулярных жирных кислот (короткоцепочечных) и сопровождается снижением pH толстого кишечника. При этом отмечается улучшение всасывания минеральных веществ, в частности Са и Mg. Возможно, низшие жирные кислоты расщепляют фитиновую кислоту, связывающую минералы, и повышают растворимость минералов в кишечнике, возможно, способствуют синтезу белков - переносчиков минеральных элементов.

По мнению ряда авторов, суммарный эффект, оказываемый короткоцепочечными кислотами (в основном молочной и масляной) на развитие самих микроорганизмов и процессы обновления клеток толстого кишечника, заключается в снижениии риска злокачественных образований толстого кишечника.

Положительная роль кишечной микрофлоры доказана в метаболизме и детоксикации экзогенных и эндогенных соединений, в формировании местного и общего иммунного ответа организма . Именно поэтому клетчатка и другие непереваримые углеводы входят в число важных нутриентов, поступление которых физиологически обосновано и регламентируется Министерством здравоохранения РФ.

Полезные функции непереваримых углеводов получили большой отклик в различной научно-популярной литературе, где пребиотики называют: некрахмальные полисахариды , пищевые волокна , балластные вещества , что не всегда вполне корректно, поскольку в эту группу входят и низкомолекулярные олигосахариды и дисахарид лактулоза. Причем два последних вида пребиотиков, содержащиеся в молоке, имеют большое значение в питании детей и особенно детей первого года жизни. В клинических испытаниях доказано положительное влияние ФОС и ГОС на увеличение численности молочнокислых и бифидобактерий при одновременном уменьшении количества патогенных микроорганизмов кишечника. Это служит хорошим основанием для введения олигосахаридов и дисахарида лактулозы в состав смесей - заменителей женского молока.

К усваиваемым углеводам относят моносахариды, дисахариды и крахмал. Моносахариды всасываются в тонком кишечнике без предварительных изменений. В дисахаридах гидролизуется лишь одна связь, а затем также происходит их всасывание. Именно поэтому моно- и дисахариды считают легко усваиваемыми компонентами пищи. В молекулах полисахаридов требуется гидролизовать сотни и тысячи гликозидных связей, но в этом их большое преимущество. В результате гидролиз полисахаридов происходит не одномоментно и обеспечивает организм постепенно поступающими углеводами без большой нагрузки для работы внутренних органов.

В целом переваривание углеводов происходит в последовательности, указанной в табл. 10.4.

Таблица 10.4

Переваривание и всасывание углеводов

Таковы традиционные представления о переваривании углеводов в желудочно-кишечном канале. Сравнительно недавно установлено, что продукты могут содержать крахмал, устойчивый к ферментативному действию. Такие формы крахмала называют резистентными. Они устойчивы к действию амилолитических ферментов тонкого кишечника и, значит, в нерасщепленном или частично нерасщенленном виде минуют его и поступают в толстый кишечник.

Завершающий этап распада резистентных форм крахмала проходит в толстом кишечнике под действием местной микрофлоры подобно тому, как деградируют другие непереваримые углеводы. Следовательно, резистентные формы крахмала закономерно считать пребиотическим компонентом углеводов.

Образование резистентных форм крахмала обусловлено следующими причинами (табл. 10.5).

Таблица 10.5

Причины образования резистентных форм крахмала

Результат

Физико-химические свойства крахмала

Большое количество полярных ОН-групп, благодаря которым возникают нативные комплексы с различными компонентами клетки: непереваримыми волокнами, растительными белками и другими биополимерами

Texi юлогическая и кулинарная обработка

Гидратация и желатинизация крахмала во многих технологических процессах завершается ретроградацией. В результате вновь образуются крахмальные зерна, которые хуже атакуются ферментами. Причем в большей степени это характерно для продуктов с высоким содержанием амилозы

Химическая модификация

Изменение структурных особенностей крахмала снижает скорость образования фсрмент-субстратного комплекса «крахмал-амилаза», что уменьшает скорость реакции в целом

Поскольку это достаточно новая область исследования при переваривании углеводов, го сведения о содержании резистентных форм крахмала имеются лишь для отдельных продуктов (табл. 10.6).

Таблица 10.6

Для количественной характеристики усваиваемости углеводов введено понятие гликемического индекса.

Гликемический индекс - увеличение концентрации глюкозы в крови после приема исследуемого продукта по отношению к стандартному продукту.

Более доступно гликемический индекс можно представить как скорость, с которой глюкоза после приема определенного продукта поступает в кровь. В зависимости от используемого метода определения гликемического индекса стандартным продуктом может быть пшеничный хлеб или глюкоза, что обязательно указывают в результатах исследования.

Ниже приведены гликемические индексы некоторых продуктов (табл. 10.7) 1 . За стандарт в данном случае принят гликемический индекс белого хлеба, равный 100%.

Таблица 10.7

Гликемические индексы некоторых продуктов питания

Эти данные значительно меняют устоявшееся мнение об усваиваемости углеводов и влиянии продуктов на уровень сахара в крови. Например, скорость поступления глюкозы из белого хлеба выше, чем из сахара (сахарозы), так как гликемический индекс белого хлеба равен 100%, а гликемический индекс сахара - 87%. В целом это также противоречит традиционному представлению о скорости усвоения моно-, ди- и полисахаридов. Ведь сахароза - дисахарид, а белый хлеб содержит полисахарид крахмал.

Гликемический индекс делят на низкий (от 10 до 40), средний (от 40 до 70) и высокий (более 70).

Таким образом, на усваиваемость углеводов влияет не только величина их молекул, но и другие факторы (табл. 10.8).

Таблица 10.8

Факторы, влияющие на усваиваемость углеводов

Наличие пищевых волокон ограничивает доступ ферментов к крахмалу

Продукты с высоким содержанием непериваримых волокон отличаются невысоким гликемическим индексом (яблоки - 52, чечевица - 38, соевые бобы - 23)

Степень разрушения клеточных структур, кулинарная и тепловая обработка увеличивают доступность крахмала для ферментов

Эффект многих продуктов, содержащих крахмал (кукурузные хлопья, пюре, запеченый картофель), после измельчения и различной тепловой обработки выше, чем эффект сахара

Другие нутриенты (белки, жиры) уменьшают скорость поступления глюкозы

Несмотря на наличие добавленного сахара, мороженое и йогурт отличаются относительно низким гликемическии индексом

Температура продукта

При понижении температуры атакусмость крахмала ферментами снижается из-за его ретроградации

1 Конь И. Я. Указ. соч.

Сведения о непереваримых углеводах, резистентных формах крахмала и гликемических индексах следует учитывать при разработке различных функциональных продуктов: диетических, детских, для спортивного питания и др.

  • Конь И. Я. Углеводы: новые взгляды на их физиологические функции и роль в питании //Вопросы детской диетологии. 2005. № 1. С. 18-25.
  • Конь И. Я. Указ. соч.

По существу, все углеводы пищи всасываются в форме моносахаридов; только небольшие фракции всасываются в виде дисахаридов и почти не всасываются в форме больших углеводных соединений. Несомненно, количество глюкозы является самым большим из всасываемых моносахаридов. Считается, что она при всасывании обеспечивает более 80% всех углеводных калорий. Это происходит из-за того, что глюкоза является конечным продуктом переваривания большинства углеводов пищи, крахмала.

Оставшиеся 20% всасываемых моносахаридов составляют галактоза и фруктоза; галактоза извлекается из молока, а фруктоза является одним из моносахаридов, получаемых при переваривании тростникового сахара. Практически все моносахариды всасываются активным транспортом. Сначала обсудим всасывание глюкозы.

Глюкоза переносится натриевым котранспортным механизмом. Глюкоза не может всасываться при отсутствии натриевого транспорта через кишечную мембрану, поскольку всасывание глюкозы зависит от активного транспорта натрия.

В транспорте натрия через кишечную мембрану существуют два этапа. Первый этап: активный транспорт ионов натрия через базолатеральную мембрану эпителиальных клеток кишечника в кровь, соответственно снижающий содержание натрия внутри эпителиальной клетки. Второй этап: это снижение приводит к входу натрия в цитоплазму из просвета кишечника через щеточную каемку эпителиальных клеток посредством облегченной диффузии.

Таким образом, ион натрия объединяется с транспортным белком, но последний не будет переносить натрий во внутреннюю поверхность клетки до тех пор, пока сам белок не объединится с другим подходящим веществом, например с глюкозой. К счастью, глюкоза в кишечнике одновременно объединяется с тем же транспортным белком, и затем обе молекулы (ион натрия и глюкоза) переносятся внутрь клетки. Таким образом, низкая концентрация натрия внутри клетки буквально «проводит» натрий внутрь клетки одновременно с глюкозой. После того, как глюкоза окажется внутри эпителиальной клетки, другие транспортные белки и ферменты обеспечивают облегченную диффузию глюкозы через клеточную базолатеральную мембрану в межклеточное пространство, а оттуда - в кровь.

Итак, первично активный транспорт натрия на базолатеральных мембранах кишечных эпителиальных клеток служит главной причиной движения глюкозы через мембраны.

Всасывание других моносахаридов . Галактоза переносится почти тем же механизмом, что и глюкоза. Однако транспорт фруктозы не связан с механизмом переноса натрия. Вместо этого фруктоза переносится на всем пути всасывания благодаря облегченной диффузии через кишечный эпителий.

Большая часть фруктозы при входе в клетку становится фосфорилированной, затем превращается в глюкозу и до попадания в кровь транспортируется уже в форме глюкозы. Фруктоза не зависит от транспорта натрия, поэтому предельная интенсивность ее транспорта составляет только около половины транспорта глюкозы или галактозы.

Всасывание белков в кишечнике

Как объяснялось в наших статьях , большинство белков после переваривания всасываются в форме дипептидов, трипептидов и незначительное количество - в виде свободных аминокислот через мембрану эпителиальных клеток кишечника. Энергия для этого транспорта доставляется в основном механизмом натриевого котранспорта, аналогичного котранспорту глюкозы. Итак, большинство пептидов или молекул аминокислот связываются внутри клеточной мембраны микроворсинок со специфическим транспортным белком, который еще до начала транспорта должен связаться с натрием.

После связывания ион натрия движется внутрь клетки по электрохимическому градиенту и тянет за собой аминокислоту или пептид. Этот процесс называют котранспортом (или вторично активным транспортом) аминокислот и пептидов. Несколько аминокислот не нуждаются в этом механизме, а переносятся специальными мембранными транспортными белками, т.е. облегченной диффузией, так же, как и фруктоза.

На мембране эпителиальных клеток кишечника было найдено не менее пяти типов транспортных белков для переноса аминокислот и пептидов. Это многообразие транспортных белков необходимо в связи с многообразными свойствами связывания белков с различными аминокислотами и пептидами.

При использовании углеводов, как впрочем и других веществ, перед организмом стоит две задачи – всасывание из кишечника в кровь и транспорт из крови в клетки тканей. В любом случае необходимо преодолевать мембрану.

Транспорт моносахаров через мембраны

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.

Вторично-активный транспорт

По механизму вторичного активного транспорта из просвета кишечника происходит всасывание глюкозы и галактозы . Такой механизм означает, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества. В случае моносахаридов таким веществом является ион натрия .

Аналогичный механизм транспорта глюкозы присутствует в эпителии канальцев почек , который реабсорбирует ее из первичной мочи.
Только наличие активного транспорта позволяет перенести из внешней среды внутрь клеток практически всю глюкозу.

Фермент Na + ,К + -АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для моносахарида. Примечательно то, что моносахарид связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется моносахарид. Результатом является накопление моносахарида в клетке, а ионы натрия выкачиваются Na + ,К + -АТФазой.

Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря облегченной диффузии.

Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов
Пассивный транспорт

В отличие от глюкозы и галактозы, фруктоза и другие моносахара всегда транспортируются белками-транспортерами, не зависящими от градиента натрия, т.е. облегченной диффузией . Так, на апикальной мембране энтероцитов находится транспортный белок ГлюТ-5 , через который фруктоза диффундирует в клетку.

Для глюкозы вторично-активный транспорт используется при ее низких концентрациях в кишечнике. Если концентрация глюкозы в просвете кишечника велика , то она также может транспортироваться в клетку путем облегченной диффузии при участии белка ГлюТ-5.

Скорость всасывания моносахаридов из просвета кишечника в эпителиоцит не одинакова. Так, если скорость всасывания глюкозы принять за 100%, то относительная скорость переноса галактозы составит 110%, фруктозы – 43%, маннозы – 19%.

Транспорт из крови через мембраны клеток

После выхода в кровь, оттекающую от кишечника, моносахариды движутся по сосудам воротной системы в печень, частично задерживаются в ней, частично выходят в большой круг кровообращения. Следующей их задачей стоит проникновение в клетки органов.

Из крови внутрь клеток глюкоза попадает при помощи облегченной диффузии по градиенту концентрации с участием белков-переносчиков (глюкозных транспортеров – "ГлюТ "). Всего выделяют 12 типов транспортеров глюкозы, отличающихся локализацией, сродством к глюкозе и способностью к регулированию.

Глюкозные транспортеры ГлюТ-1 имеются на мембранах всех клеток и ответственны за базовый транспорт глюкозы в клетки, требуемый для поддержания жизнеспособности.

Особенностями ГлюТ-2 является способность пропускать глюкозу в двух направлениях и низкое сродство к глюкозе. Переносчик представлен, в первую очередь, в гепатоцитах , которые после еды захватывают глюкозу, а в постабсорбтивный период и при голодании поставляют ее в кровь. Также присутствует этот транспортер в эпителии кишечника и почечных канальцев . Присутствуя на мембранах β-клеток островков Лангерганса, ГлюТ-2 переносит глюкозу внутрь при ее концентрации свыше 5,5 ммоль/л и благодаря этому генерируется сигнал для увеличения выработки инсулина .

Глют-3 обладает высоким сродством к глюкозе и представлен в нервной ткани . Поэтому нейроны способны поглощать глюкозу даже при низких ее концентрациях в крови.

В мышцах и жировой ткани находится ГлюТ-4 , только эти транспортеры являются чувствительными к влиянию инсулина . При действии инсулина на клетку они выходят на поверхность мембраны и переносят глюкозу внутрь. Указанные ткани получили название инсулинзависимых .

Некоторые ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми . К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты.