При распределении в организме некоторые Л В частично могут задерживаться и накапливаться в различных тканях. Происходит это в основном вследствие об­ратимого связывания ЛВ с белками, фосфолипидами и нуклеопротеинами кле­ток. Этот процесс носит название депонирование. Концентрация вещества в месте его депонирования (в депо) может быть достаточно высокой. Из депо ве­щество постепенно высвобождается в кровь и распределяется по другим органам и тканям, в том числе достигая места своего действия. Многие Л В связываются с белками плазмы крови. Слабокислые соединения (нестероидные противовоспалительные средства, сульфаниламиды) связывают­ся в основном с альбуминами (самой большой фракцией белков плазмы), а сла­бые основания - с α1-кислым гликопротеином и некоторыми другими белками плазмы крови. Связанное с белками ЛВ не проявляет фармакологической активности. Но по­скольку это связывание обратимо, часть вещества постоянно высвобождается из комплекса с белком (происходит это при снижении концентрации свободного вещества в плазме крови) и оказывает фармакологическое действие. Биотрансформация (метаболизм) - изменение химической структуры лекар­ственных веществ и их физико-химических свойств под действием ферментов организма. Основной направленностью этого процесса является превращение ли-пофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах). В процессе биотрансформации, как правило, происходит снижение активности (токсичности) исходных веществ.

Биотрансформация липофильных ЛВ в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулу-ма гепатоцитов. Эти ферменты называются микросомальными, потому что они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомо­генизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаются в так называемой «микросомальной» фракции).

В плазме крови, а также в печени, кишечнике, легких, коже, слизистых обо­лочках и других тканях имеются немикросомальные ферменты, ло­кализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ.

Различают два основных вида метаболизма лекарственных веществ:

несинтетические реакции (метаболическая трансформация);

· синтетические реакции (конъюгация).

Лекарственные вещества могут подвергаться или метаболической биотранс­формации (при этом образуются вещества, называемые метаболитами), или конъ­югации (образуются конъюгаты). Но большинство Л В сначала метаболизируется при участии несинтетических реакций с образованием реакционноспособных ме­таболитов, которые затем вступают в реакции конъюгации. метаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз. Многие липофильные соединения подвер­гаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р-450-редуктаза и цитохром Р-450 - гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (ле­карственному веществу) с образованием гидроксильной группы (реакция гидро-ксилирования). Восстановление лекарственных веществ может происходить при участии мик-росомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон). Гидролиз лекарственных веществ осуществляется в основном немикросомаль-ными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тка­нях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах лекарственных веществ. Гидроли­зу подвергаются сложные эфиры - ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота. Метаболиты, которые образуются в результате несинтетических реакций, мо­гут в отдельных случаях обладать более высокой активностью, чем исходные со­единения. Примером повышения активности лекарственных веществ в процес­се метаболизма является использование предшественников лекарств (пролекарства). Пролекарства фармакологически неактивны, но в организме они превращаются в активные вещества. В процессе биосинтетических реакций (конъюгация) к функцио­нальным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глута-тиона, глицина, сульфаты и др.) или высокополярные химические группы (аце­тильные, метильные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции. Под действием некоторых лекарственных веществ (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличе­ние скорости синтеза) микросомальных ферментов печени. В результате при од­новременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повы­шается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).

Пути выведения лекарств, их значение для фармакотерапевтического и побочного действия препаратов. Выделение лекарств слюнными железами в полость рта.

Печень - это важный орган, от правильного функционирования которого зависит самочувствие и здоровье человека. Энзимы - ферменты печени, которые участвуют в биохимических процессах, протекающих в организме.

Медицинские показания

Данный орган вырабатывает несколько видов ферментов:

  1. Секреторные.
  2. Экскреторные.
  3. Индикаторные.

Концентрация энзимов в крови меняется, если:

  • поврежден рассматриваемый орган;
  • наблюдается развитие патологий.

Биохимический анализ крови - один из эффективных методов диагностики болезней печени. Многие ферменты, продуцируемые данным органом, поступают в кровь. При некоторых патологиях количество одних элементов в плазме крови уменьшается, а других - увеличивается.

Анализ крови при заболевании печени помогает медикам сузить круг патологий, при необходимости направить пациента на дополнительное обследование, поставить диагноз. Метод показывает, в какой концентрации в сыворотке крови присутствуют ферменты каждой из 3-х групп:

  1. Секреторные - некоторые из них участвуют в процессе холинэстераза и свертывания крови. При патологиях их концентрация снижается.
  2. Экскреторные выделяются с желчью. При нарушениях в работе органа их уровень увеличивается.
  3. Индикаторные выполняют внутриклеточные функции, располагаются в митохондриях (АсАТ, ГДГ), цитозоле клеток (АлАТ, ЛДГ, АсАТ). Их концентрация в сыворотке крови при поражениях печени увеличивается. Норма АлАТ - 5-43 Е/л, а АсАТ - 5-40 Е/л. Значение первого показателя может увеличиваться в 20-100 и более раз при остром паренхиматозном гепатите. Активность АсАТ повышается незначительно.

В крови при заболеваниях печени увеличивается концентрация индикаторных энзимов:

  • ГлДГ;

Медики, проводя обследование печени, учитывают показатели АЛТ и АСТ. Норма первого:

  • у мужчин (10-40 Ед/л);
  • у женщин (12-32 Ед/л).

При заболевании гепатитом концентрация АЛТ резко увеличивается до возникновения симптоматики. Поэтому своевременное обследование позволяет оперативно приступить к лечению.

Норма АСТ:

  • у мужчин (15-31 Ед/л);
  • у женщин (20-40 Ед/л).

Концентрация этого вещества увеличивается при повреждении гепатоцитов. Показатели АЛТ и АСТ - метод диагностики, который называется коэффициентом де Ритиса (DRr). Медики определяют их соотношение для подбора эффективной схемы лечения. АЛТ к АСТ в норме должно быть 1:3.

Дополнительные исследования

Если после оценки результатов анализа крови на АСТ и АЛТ нельзя поставить точный диагноз, то проводят дополнительные анализы для проверки печени. Для этого определяют концентрацию:

  • ГлДГ;

В норме показатели ГГТ - до 38 Ед/л (у женщин) и до 55 Ед/л (у мужчин). Увеличение концентрации больше чем в 10 раз наблюдается при диабете и болезнях желчевыводящих путей. Норма ГлДГ - до 3 Ед/л (у женщин) и до 4 Ед/л (у мужчин). Концентрация увеличивается при тяжелых отравлениях, онкологии, инфекционных процессах. Норма ЛДГ - 140-350 Ед/л.

ЩФ (щелочная фосфотаза) участвует в процессе пищеварения, выводится с желчью. В норме ее концентрация в сыворотке крови - 30-90 Ед/л (у мужчин может достигать 120 Ед/л). При увеличении интенсивности обменных процессов уровень ЩФ возрастает до 400 Ед/л.

Плохие анализы крови не повод для паники. Врач после постановки диагноза назначает лечение с учетом особенностей течения заболевания и организма пациента. Один из препаратов, которые прописывают для нормализации ферментов, - Галстена. Нельзя заниматься самолечением, принимая лекарство без консультации с квалифицированным специалистом. Народные средства используют по рекомендации лечащего врача.

Почему повышается уровень трансаминаз?

Трансаминазы - микросомальные энзимы, которые содержатся во всех клетках и необходимы для аминотрансфераза. Благодаря им происходит обмен азотсодержащих соединений с углеводами. Трансаминаза АЛТ активна в печени, а АСТ - в мышечной ткани. Увеличение уровня этих веществ в крови наблюдается при патологиях печени (вирусных гепатитах) и инфаркте миокарда.

При гепатите у пациента может отсутствовать желтуха, уровень билирубина в норме, но концентрация трансфераз повышается. Это может свидетельствовать о следующих патологиях:

  • механической желтухе;
  • опухолевых процессах в печени;
  • холестазе;
  • остром вирусном, токсическом или хроническом гепатите.

Из-за инфаркта миокарда уровень аминотрансаминаз за несколько суток может повыситься в 20 раз, а при стенокардии их концентрация не меняется. Количество аминотрансаминаз в крови может повышаться временно при подагре, обширных мышечных травмах, миопатиях, ожогах, миозитах, болезнях, связанных с распадом эритроцитов.

Показания DR (коэффициент де Ритиса) помогают в диагностике следующих патологий:

  • вирусный гепатит - DR до 1;
  • хронический гепатит или дистрофия печени - DR 1 и выше;
  • алкогольная болезнь печени (гепатит, жировая дистрофия или цирроз печени) - DR 2 и выше, а кровяной альбумин до 35 г/л;
  • инфаркт миокарда - DR выше 1,3.

Патологии и симптоматика

Диагностика цирроза печени и гепатита С включает биохимический анализ крови. С его помощью медики определяют:

  • уровень билирубина;
  • концентрацию ферментов печени;
  • содержание сывороточных белков.

Допустимые значения:

  • билирубин (1,7-17 мкмоль/л);
  • СДГ (до 17 ед.);
  • АСТ, АЛТ (до 40 ед.);
  • фруктозо-1-фосфатальдолаз (до 1 ед.);
  • урокиназ (до 1 ед.).

Билирубин при циррозе печени повышается. Учитывают 3 показателя (измеряются в мкмоль/л):

  • прямая фракция (норма - до 4,3);
  • непрямая фракция (норма - до 17,1);
  • сумма фракций (норма - до 20,5).

Анализ крови при циррозе печени дополнительно предполагает определение уровня ЩФ (норма - до 140 ед.), γ-ГГТ (норма для женщин - до 36 ед., для мужчин - до 61 ед.), альбуминов (в норме - до 50 г/л). Рекомендуется проводить коагулограмму (специальный тест). Печень синтезирует большое количество белков, которые влияют на свертываемость крови. Пациентам, предрасположенным к патологиям печени, необходимо знать:

  • как проверить печень;
  • какие анализы нужно сдать;
  • признаки и симптомы заболеваний органа.

Нормализовать уровень ферментов позволяет устранение причин, которые привели к увеличению концентрации первых. Могут потребоваться дополнительные анализы при циррозе печени и других патологиях. Какие анализы нужно сдать, определяет лечащий врач.

Кроме медикаментозного лечения, пациентам советуют откорректировать питание:

  • исключить из рациона соленое, жирное, острое и копчености;
  • отказаться от кофе и спиртного;
  • включить в меню молочную продукцию и органическую пищу;
  • принимать гепатопротекторы.

Своевременно сданные анализы при раке печени позволяют оперативно начать лечение.

В запущенном состоянии заболевание способно спровоцировать летальный исход. Обнаружив симптомы цирроза, нельзя заниматься самолечением. Рекомендуется обратиться за помощью к врачу, сдать необходимые анализы при раке печени. Опасно такое состояние во время беременности. В этот период пациентка должна находиться под постоянным наблюдением врачей (обследование печени). При необходимости будущей маме потребуется лечь на сохранение либо проводится медикаментозное прерывание беременности.

Как распознать синдром Жильбера: симптомы, диагностика и лечение

Существует множество заболеваний печени, которые могут быть врожденного или приобретенного характера, излечимые или системные, что чередуют стадии ремиссии и рецидива. Синдром Жильбера — это врожденная аномалия, в результате которой организм не способен утилизировать билирубин, что приводит к его чрезмерному накоплению. Все это сопровождается характерной симптоматикой, требующей комплексного лечения.

Чтобы болезнь Жильбера можно было своевременно подавить, пациенту нужно начинать терапию при первых тревожных симптомах. Заболевание излечить полностью еще не удавалось ни одному врачу, а все медикаментозные средства и физиопроцедуры нацелены на устранение клинической картины. Риски осложнений невысоки, но все же существуют, поэтому очень важно грамотно подходить в борьбе с патологией.

Как проявляется синдром Жильбера?

Генетическое отклонение синдром Жильбера очень важно выявить своевременно, чтобы избыток билирубина не привел к серьезным последствиям. В целом, визуально определить болезнь можно по желтушности кожного покрова и слизистых оболочек, это возможно и для медицинского специалиста, и для самого пациента. Также стоит оценивать свое внутреннее самочувствие и состояние.

Своевременное обращение к врачу подразумевает обследование в клинике при первых проявлениях первичных признаков. Вторичные симптомы, как правило, свидетельствуют о халатном отношении к своему здоровью.

Обращаться к врачу нужно при первых же тревожных признаках, независимо от того, впервые возникла такая болезнь или речь идет об очередном обострении синдрома Жильбера. Как правило, симптоматика связана с нарушением работы печени.

Первичные симптомы

В большинстве случаев такое заболевание является врожденной патологией, годами протекающей в латентной форме без симптомов и рецидивов. И только под влиянием определенных условий синдром Жильбера проявляется типичной клинической картиной.

Первичное проявление патологии подразумевает следующие симптомы:

  • умеренная желтушность кожи и слизистой оболочки, которая возникает периодически;
  • желтеют белки глаз;
  • окрашивание желтым оттенком ладоней рук, носогубного треугольника, подмышек и ступней ног.

Долгое время заболевание может не выдавать себя видимыми проявлениями, практически не отражаясь на здоровье и самочувствии. Поспособствовать могут негативные факторы воздействия, стрессы, неправильное питание, болезни печени, вредные экологические условия, отравления, инфекции, падение иммунитета и др.

Вторичные симптомы

Если заболевание на стадии первичного проявления не было подавлено грамотным лечением, наступает вторая стадия рецидива. К вторичным признакам относят:

  • нарушение сна;
  • головокружение;
  • повышенная утомляемость и беспричинная усталость;
  • горечь во рту;
  • частый метеоризм;
  • тошнота, периодически возникающая рвота;
  • изжога;
  • отсутствие аппетита;
  • болевой синдром в правом подреберье, где располагается печень (характер боли — тупая и ноющая);
  • тяжесть в животе;
  • диарея или запоры;
  • вздутие в кишечнике;
  • заметное увеличение печени, реже селезенки.

Как правило, около 60% пациентов с таким диагнозом замечают увеличение печени, в то время как у 10% людей также увеличивается селезенка. Желтуха — это самый тяжелый симптом синдрома Жильбера, но в целом заболевание редко приводит к последствиям и сопутствующим патологиям.

Диагностика

Как правило, такая патология проявляется в подростковом возрасте, когда организм подвержен нагрузкам, а печень может давать сбой. Диагностические процедуры проводятся по стандартному плану, трудностей с постановкой диагноза не возникает. Возрастная категория пациентов с синдромом Жильбера — от 12 до 30 лет, когда человек может замечать эпизоды желтушности разной степени.

Где можно провести?

Проводить диагностику можно в любом диагностическом центре на частной основе. В таких заведениях специалисты обладают новейшими разработками и инновационными технологиями для максимально упрощенного, но точного получения информации. Такие услуги будут проводиться на платной основе, бесплатное обследование предоставляют городские поликлиники.

Как проходит и какие процедуры включает?

Полный сценарий диагностических мероприятий в случае подозрения на болезнь Жильбера подразумевает два этапа:

  1. Лабораторные анализы — сдача общего анализа крови и кала, биохимический анализ крови и на билирубин, сдача кала на поиск серкобилина, проведение пробы фенобарбиталом и никотиновой кислотой, а также проба организма на голодание.
  2. Инструментальные анализы — ультразвуковое исследование печени и других органов системы ЖКТ, биопсия частички печени с целью проведения гистологии, компьютерная томография для получения других деталей.

Как правило, назначение на обследование выдает врач гепатолог или гастроэнтеролог, генетиков в область знаний по поводу синдрома Жильбера не вовлекают. Редко диагностика требует анализа эпителия и крови со слизистой оболочки во рту пациента.

Цена

Стоимость анализов на выявление такого заболевания может варьировать в зависимости от разновидности самого анализа, количества его показателей, количества проводимых проб и тестов, использования разного оборудования, а также от ценовой политики диагностического центра.

Лечение

Весь курс терапии будет направлен на одну цель — понижение уровня билирубина, благодаря чему можно добиться стадии ремиссии заболевания на долгие годы. В противном случае нарушенное количество пигмента крайне негативно отразиться на состоянии и работе печени. Основной упор нужно делать на питание и отказ от вредных привычек.

Как лечит заболевание официальная медицина?

Только при помощи определенных препаратов можно не просто уменьшить число пигмента, но и устранить другие симптомы и вытекающие проявления синдрома Жильбера. Обычно курс медикаментозного лечения предполагает прием следующих групп лекарственных средств:

  • препараты индукторы микросомальных ферментов, в составе которых содержится фенобарбитал, понижающий непрямой билирубин;
  • препараты гепатопротекторы для защиты и восстановления клеток и тканей печени;
  • желчегонные средства для очищения печени и смежных органов пищеварения;
  • ферменты и сорбенты;
  • лекарственные средства противорвотного действия;
  • препараты пропульсанты для улучшения перистальтики в кишечнике.

Перечисленные средства не способны вылечить само заболевание, они направлены на понижение степени выраженности симптомов. Усилить действие препаратов и ускорить наступление ремиссии можно при помощи физиопроцедур. При таком диагнозе и только взрослым пациентам врачи могут назначить сеансы фототерапии, в результате облучения лампой разрушается и быстрее выводится лишний билирубин.

Можно ли вылечить Синдром Жильбера народными методами?

Так как в ходе прогрессирования болезни страдает печень, многие специалисты склоняются к нетрадиционному лечению, чтобы уберечь пораженный орган от негативного воздействия со стороны лекарственных средств. Помимо лечения народными средствами важно придерживаться диеты, а также исключить все факторы влияния на печень. Самый верный способ подавление патологии — это применение целебных трав.

В лечении печени используют следующие растения:

  • кукурузные рыльца;
  • полынь;
  • расторопша;
  • ясменник пахучий;
  • барбарис;
  • пижма;
  • цикорий;
  • девясил;
  • одуванчик;
  • плоды шиповника;
  • бессмертник;
  • чистотел;
  • календула;
  • ромашка.

Расторопшу чаще всего используют в виде масел, другие растения врачи рекомендуют чередовать, формируя сборы для заваривания. Травы смешивают, в стакане кипятка заваривают столовую ложку сырья, настаиваются 15-30 минут и отцеживают от осадка. Принимать отвар нужно перед каждым приемом пищи по четверти-половине стакана 2-4 раза в день, курс лечения длится около 1-3 месяцев. Узнать больше о методах чистки печени травами.

Особенности питания во время лечения, диета

Продукты питания больше всего воздействуют на работу печени, поэтому пациентам с любыми заболеваниями этого органа назначают диетический режим питания. Чаще всего используют методику диеты №5, которая не только указывает правильные и запретные продукты, но и предлагает множество рецептов блюд для сбалансированного и полноценного питания.

Диета строится на следующих принципах:

  • кушать нужно только теплую пищу, питьевая вода также употребляется теплой;
  • запретными являются холодные напитки, газировка, кофе и крепкий чай;
  • все блюда должны быть отварными или запеченными, приготовленными на пару;
  • запрещены любые кислые продукты и фрукты, не прошедшие термической обработки;
  • употреблять пищу нужно маленькими порциями до 6 раз в сутки;
  • острые приправы, соусы, кетчуп, майонез не должны присутствовать в рационе;
  • запретными считаются продукты с содержанием холестерина, эфиров, тугоплавящихся жиров;
  • куриные яйца также вредны для печени;
  • в список противопоказаний попадают хлебобулочные продукты, сдоба;
  • отказаться нужно от жирных сортов рыбы и мяса;
  • в сутки нужно выпивать от 2 л чистой воды и больше;
  • предпочтение нужно отдавать растительной пище.

Также помочь печени справляться со своими функциями, защищаться от воздействия токсинов и ядов могут такие продукты, как свежий натуральный мед, кисломолочные продукты низкой жирности, оливковое или льняное масло, травяные чаи и настой шиповника. Запрещено кушать позднее, чем за 3 часа до сна.

Меры предосторожности

Чтобы курс лечения был эффективным, а период ремиссии продлился как можно дольше, врачи дают несколько рекомендаций по поводу профилактики обострений. Для этого нужно соблюдать несколько правил, а именно:

  • исключение длительного нахождения под прямыми лучами солнца;
  • исключение переохлаждения или перенагрева;
  • отказ от чрезмерных физических нагрузок;
  • отказ от любых вредных привычек;
  • исключение лечения антибактериальными и другими сильнодействующими препаратами;
  • соблюдение правил здорового питания без жареного, жирного, острого и копченого в еде.

Кроме того питание должно быть частым, между приемами пищи не должно быть долгих перерывов, тоже самое касается и употребления воды. Полезно будет пить аптечные минеральные воды, такие как Ессентуки или Боржоми, но исключительно без газа. Особое внимание уделяют психоэмоциональному состоянию, так как неврозы, стрессы, депрессии сказываются негативно на работе печени.

Способность некоторых природных полифенолов оказывать влияние на канцерогенез тесно связана с действием на систему многоцелевых оксидаз микросом.

Ваттенберг и сотрудники оценивали активность этой системы путем определения арилгидроксилазы углеводородов (АГ). Индукторами АГ наряду с ПАУ являются фенотиазины, флавоны, 2-фенил-бензотиазол и другие соединения. Вначале исследователи считали, что в тканях предсуществует определенный уровень АГ, который может возрастать под влиянием указанных индукторов.

Однако впоследствии выяснилось, что «базальная» активность АГ характерна только для печени, а в слизистой оболочке тонкой кишки или в легких обнаружение АГ связано с наличием в корме животных индуктора этой системы. Последний входил в состав люцерны - составной части виварного рациона крыс, который благодаря этому индуцировал АГ в указанных тканях в отличие от очищенных синтетических рационов. Это послужило отправным пунктом интересных исследований, связанных с обнаружением индукторов АГ в овощных культурах, относящихся к семейству Brassicaceae, - брюссельской цветной и качанной капусте, турнепсе. Добавление к диете крыс брюссельской или качанной капусты усиливает в слизистой оболочке тонкой кишки крыс О-деалкилирование фенацетина и 7-этокси-кумарина.

Химический анализ показал, что индуцирующей активностью обладает фракция, содержащая индольные соединения, среди которых идентифицированы индол-3-карбинол, индол-3-ацетонитрил и 3,3´-дииндолил-метан (Loub е. а., 1975).

Ферментативное образование индукторов арилгидроксилазы
в растении (Brassica oleracea) (Loub e. a., 1975)

Для индукции АГ эти соединения вводили крысам в количествах 0,1 ммоль индола в 1 мл диметилсульфоксида. При этом индол-3-карбинол повысил активность АГ по сравнению с контролем в 55 раз в печени и в 31 раз в слизистой тонкой кишки. Два других препарата менее активно индуцировали АГ в указанных тканях, причем индол-3-ацетонитрил при введении в указанной дозе проявляет токсичность.

Исходное индольное соединение - индолилметилглюкозинолат - содержится во многих овощах, и, когда цельность растительных клеток нарушается, фермент мирозиназа превращает его в производные, показанные на рисунке. Четвертое из них - аскорбиген - обладает слабой индуцирующей активностью. Наличие в растениях индо-лилметилглюкозинолата генетически детерминировано и зависит от видовых особенностей, условий произрастания, степени зрелости, хранения и т. д.

Ваттенберг и сотрудники (Wattenberg е. а., 1968) изучили способность различных флавоновых соединений индуцировать БП-гидроксилазу в печени и легких крыс.

Наряду с синтезированным β-нафтофлавоном индукторами ферментной системы оказались содержащиеся в плодах цитрусовых 5,6,7,8,4´-пен-таметоксифлавон (тангеритин) и 5,6,7,8,3´,4´-гексаметоксифлавон (нобилетин).

Наличие метоксигрупп в составе этих природных соединений делает их индукторами БП-гидроксилазы, а содержащиеся в растениях полигидроксилированные формы флавонов лишены этой способности. При введении этих соединений крысам активность БП-гидроксилазы возрастает в печени в 4 - 6 раз, а в легких - в среднем в 3 раза по сравнению с соответствующими контролями.

В наших исследованиях изучалась индукция деметилазы ДМНА под влиянием полифенолов астрозида, кверцетина, пентоацетата кверцетина и квертина, полученных на кафедре фармацевтической химии Киевского института усовершенствования врачей. Предварительные данные показали, что кварцетин при одно- и трехразовом введении крысам, а квертин при скармлил вании в течение 10 дней усиливают деметилирование ДМНА. Эти исследования будут продолжены для выяснения возможного антиканцерогенного действия препаратов.

Таким образом, рассмотрены некоторые и индолы пищевых растений, усиливающие метаболизм канцерогенов. Мы сознательно не касаемся в этой главе некоторых других природных индукторов MOM , которые могут оказать вредное действие на организм. Следует напомнить, что индукция MOM не всегда коррелирует с антиканцерогенным действием соединений.

Однако в последнее время Ваттенберг (Wattenberg, 1975а) пришел к заключению, что большинство активных индукторов этой системы уменьшает опухолеобразование.

Если при этом не активируется система обезвреживания канцерогенов, а наоборот, возникают активные бластомогенные метаболиты, то избыток последних не успевает вступить во взаимодействие с чувствительными мишенями в клетке.

По мнению Ваттенберга, большую опасность представляет процесс медленного образования «проксимальных» канцерогенов, контакт которых с биополимерами оказывается более длительным. В качестве доказательства автор отмечает 15 индукторов MOM , которые подавляли бластомогенное действие 9 различных по структуре канцерогенов.

Однако антиканцерогенное действие не доказано для некоторых других активных индукторов MOM , в том числе и для ряда фенольных и индольных соединений, содержащихся в растениях.

Мы полагаем, что обнаружение и идентификация безвредных для человека природных индукторов MOM важны как первый этап отбора соединений с предполагаемым антиканцерогенным действием. В дальнейшем необходима проверка способности этих соединений подавлять химический канцерогенез.

Печень - самая крупная железа пищеварительного тракта. Она выполняет в организме функцию биохимической лаборатории и играет важную роль в белковом, углеводном и липидном обменах (см. ниже). В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церуло-плазмин, трансферрин, ангиотензиноген и др. Через эти белки опосредуется участие печени в таких важных процессах, как поддержание онкотического давления, регуляция АД и объёма циркулирующей крови, свёртывание крови, метаболизм железа и др.

Важнейшая функция печени - детоксикаци-онная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инакти-вируются лекарственные препараты и токсические вещества экзогенного происхождения, NH 3 - продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины.

Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Эти вещества могут попадать в организм с пищей, через кожу или с вдыхаемым воздухом.

Чужеродные вещества, или ксенобиотики, делят на 2 группы:

Продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);

Вещества бытовой химии - моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Гидрофильные ксенобиотики выводятся из организма в неизменённом виде с мочой, гидрофобные могут задерживаться в тканях, связываясь с белками или образуя комплексы

с липидами клеточных мембран. Со временем накопление в клетках тканей чужеродного вещества приведёт к нарушению их функций. Для удаления таких ненужных для организма веществ в процессе эволюции выработались механизмы их детоксикации (обезвреживания) и выведения из организма.

I. МЕХАНИЗМЫ ОБЕЗВРЕЖИВАНИЯ КСЕНОБИОТИКОВ

Обезвреживание большинства ксенобиотиков происходит путём химической модификации и протекает в 2 фазы (рис. 12-1). В результате этой серии реакций ксенобиотики становятся более гидрофильными и выделяются с мочой. Вещества, более гидрофобные или обладающие большой молекулярной массой (>300 кД), чаще выводятся с жёлчью в кишечник и затем удаляются с фекалиями.

Система обезвреживания включает множество разнообразных ферментов, под действием которых практически любой ксенобиотик может быть модифицирован.

Микросомальные ферменты катализируют реакции С-гидроксилирования, N-гидроксили-рования, О-, N-, S-дезалкилирования, окислительного дезаминирования, сульфоокисления и эпоксидирования (табл. 12-1).

В мембранах ЭР практически всех тканей локализована система микросомального окисления (монооксигеназного окисления). В эксперименте при выделении ЭР из клеток мембрана распадается на части, каждая из которых образует замкнутый пузырёк - микросому, отсюда и название - микросомальное окисление. Эта система обеспечивает первую фазу обезвреживания большинства гидрофобных веществ. В метаболизме ксенобиотиков могут принимать участие ферменты почек, лёгких, кожи и ЖКТ, но наиболее активны они в печени. К группе микросомальных ферментов относят специфические оксидазы, различные гидролазы и ферменты конъюгации.

Рис. 12-1. Метаболизм и выведение ксенобиотиков из организма. RH - ксенобиотик; К - группа, используемая при конъюгации (глутатион, глюкуронил и др.); М - молекулярная масса. Из множества цитохром Р 450 -зависимых реакций на рисунке приведена только одна - схема гидроксилирования ксенобиотика. В ходе первой фазы в структуру вещества RH вводится полярная группа ОН - . Далее происходит реакция конъюгации; конъюгат в зависимости от растворимости и молекулярной массы удаляется либо почками, либо с фекалиями.

Основные функции печени

Обмен углеводов

Глюконеогенез

Синтез и распад гликогена

Обмен липидов и их производных

Синтез жирных кислот и жиров из углеводов Синтез и выведение холестерина Формирование липопротеинов Кетогенез

Синтез жёлчных кислот 25-гидроксилирование витамина D 3

Обмен белков

Синтез белков плазмы крови (включая некоторые факторы свёртывания крови) Синтез мочевины (обезвреживание аммиака)

Обмен гормонов Метаболизм и выделение стероидных гормонов Метаболизм полипептидных гормонов

Метаболизм и экскреция билирубина Депонирование

гликогена витамина А витамина В 12 железа

Лекарства и чужеродные вещества

Метаболизм и экскреция

Таблица 12-1. Возможные модификации ксенобиотиков в первой фазе обезвреживания

Вторая фаза - реакции конъюгации, в результате которых чужеродное вещество, модифицированное ферментными системами ЭР, связывается с эндогенными субстратами - глюкуроновой кислотой, серной кислотой, глицином, глутатионом. Образовавшийся конъюгат удаляется из организма.

А. МИКРОСОМАЛЬНОЕ ОКИСЛЕНИЕ

Микросомальные оксидазы - ферменты, локализованные в мембранах гладкого ЭР, функционирующие в комплексе с двумя внемитохон-дриальными ЦПЭ. Ферменты, катализирующие восстановление одного атома молекулы О 2 с образованием воды и включение другого атома кислорода в окисляемое вещество, получили название микросомальных оксидаз со смешанной функцией или микросомальных монооксигеназ. Окисление с участием монооксигеназ обычно изучают, используя препараты микросом.

1. Основные ферменты микросомальных электронтранспортных цепей

Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты - мембранные белки, активные центры которых локализованы на цитоплазма-тической поверхности ЭР. Система включает несколько белков, составляющих электронт-ранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов - NADPH-Р 450 редуктазы и цитохрома Р 450 , вторая включает фермент NADH-цитохром-b 5 редукта-зу, цитохром b 5 и ещё один фермент - стеароил-КоА-десатуразу.

Электронтранспортная цепь - NADPH-Р 450 редуктаза - цитохром Р 450 . В большинстве случаев донором электронов (ē) для этой цепи служит NADPH, окисляемый NADPH-Р 450 ре-дуктазой. Фермент в качестве простетической группы содержит 2 кофермента - флавинаде-ниндинуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADРH переходят последовательно на коферменты NADPH-Р 450 редуктазы. Восстановленный FMN (FMNH 2) окисляется цитохромом Р 450 (см. схему ниже).

Цитохром Р 450 - гемопротеин, содержит про-стетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Название цитохром Р 450 указывает на то, что максимум поглощения комплекса цитохрома Р 450 лежит в области 450 нм.

Окисляемый субстрат (донор электронов) для NADH-цитохром Ь 5 -редуктазы - NADH (см. схему ниже). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe 3+ цитохрома b 5 . Цитохром b 5 в некоторых случаях может быть донором электронов (ē) для ци-тохрома Р 450 или для стеароил-КоА-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды (рис. 12-2).

NADH-цитохром b 5 редуктаза - двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу - кофермент FAD, а единственный гидрофобный «хвост» закрепляет белок в мембране.

Цитохром b 5 - гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий «заяко-


Рис. 12-2. Электронтранспортные цепи ЭР. RH - субстрат цитохрома Р 450 ; стрелками показаны реакции переноса электронов. В одной системе NADPH окисляется NADPH цитохром Р 450 -редуктазой, которая затем передаёт электроны на целое семейство цитохромов Р 450 . Вторая система включает в себя окисление NADH цитохром b 5 -редуктазой, электроны переходят на цитохром b 5 ; восстановленную форму цитохрома b 5 окисляет стеароил-КоА-десатураза, которая переносит электроны на О 2 .

ренный» в липидном бислое спирализованный домен.

NADH-цитохром b 5 -редуктаза и цитохром b 5 , являясь «заякоренными» белками, не фиксированы строго на определённых участках мембраны ЭР и поэтому могут менять свою локализацию.

2. Функционирование цитохрома Р 450

Известно, что молекулярный кислород в трип-летном состоянии инертен и не способен взаимодействовать с органическими соединениями. Чтобы сделать кислород реакционно-способным, необходимо его превратить в синглетный, используя ферментные системы его восстановления. К числу таковых принадлежит монок-сигеназная система, содержащая цитохром Р 450 . Связывание в активном центре цитохрома Р 450 липофильного вещества RH и молекулы кислорода повышает окислительную активность фермента. Один атом кислорода принимает 2 ē и переходит в форму О 2- . Донором электронов служит NADРH, который окисляется NADРH-цитохром Р 450 редуктазой. О 2- взаимодействует с протонами: О 2- + 2Н + → Н 2 О, и образуется вода. Второй атом молекулы кислорода включается в субстрат RH, образуя гидроксиль-ную группу вещества R-OH (рис. 12-3).

Суммарное уравнение реакции гидроксилиро-вания вещества RH ферментами микросомаль-ного окисления:

RH + O 2 + NADPH + H + → ROH + H 2 O + NADP + .

Субстратами Р 450 могут быть многие гидрофобные вещества как экзогенного (лекарственные препараты, ксенобиотики), так и эндогенного (стероиды, жирные кислоты и др.) происхождения.

Таким образом, в результате первой фазы обезвреживания с участием цитохрома Р 450 происходит модификация веществ с образованием функциональных групп, повышающих растворимость гидрофобного соединения. В результате модификации возможна потеря молекулой её биологической активности или даже формирование более активного соединения, чем вещество, из которого оно образовалось.

3. Свойства системы микросомального окисления

Важнейшие свойства ферментов микросо-мального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции.

Широкая субстратная специфичность. Изоформы Р 450

К настоящему времени описано около 150 генов цитохрома Р 450 , кодирующих различные изоформы фермента. Каждая из изоформ Р 450

Рис. 12-3. Транспорт электронов при монооксигеназном окислении с участием Р 450 . Связывание (1) в активном центре цитохрома Р 450 вещества RH активирует восстановление железа в геме - присоединяется первый электрон (2). Изменение валентности железа увеличивает сродство комплекса Р 450 -Fе 2+ -RH к молекуле кислорода (3). Появление в центре связывания цитохрома Р 450 молекулы О 2 ускоряет присоединение второго электрона и образование комплекса Р 450 -Fе 2 +О 2 - -RH (4). H следующем этапе (5) Fе 2+ окисляется, второй электрон присоединяется к молекуле кислорода Р 450 -Fе 3+ О 2 2- . Восстановленный атом кислорода (О 2-) связывает 2 протона, и образуется 1 молекула воды. Второй атом кислорода идёт на построение ОH-группы (6). Модифицированное вещество R-OH отделяется от фермента (7).

имеет много субстратов. Этими субстратами могут быть как эндогенные липофильные вещества, модификация которых входит в путь нормального метаболизма этих соединений, так и гидрофобные ксенобиотики, в том числе лекарства. Определённые изоформы цитохрома Р 450 участвуют в метаболизме низкомолекулярных соединений, таких как этанол и ацетон.

Регуляция активности микросомальной системы окисления

Регуляция активности микросомальной системы осуществляется на уровне транскрипции или посттранскрипционных изменений. Индукция синтеза позволяет увеличить количество ферментов в ответ на поступление или образование в организме веществ, выведение которых невозможно без участия системы микросомального окисления.

В настоящее время описано более 250 химических соединений, вызывающих индукцию микросомальных ферментов. К числу этих индукторов относят барбитураты, полицикли-

ческие ароматические углеводороды, спирты, кетоны и некоторые стероиды. Несмотря на разнообразие химического строения, все индукторы имеют ряд общих признаков; их относят к числу липофильных соединений, и они служат субстратами для цитохрома Р 450 .

Б. КОНЪЮГАЦИЯ - ВТОРАЯ ФАЗА ОБЕЗВРЕЖИВАНИЯ ВЕЩЕСТВ

Вторая фаза обезвреживания веществ - реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков (табл. 12-2).

1. Участие трансфераз в реакциях конъюгации

Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз. Они характеризуются широкой субстратной специфичностью.

Таблица 12-2. Основные ферменты и метаболиты, участвующие в конъюгации

УДФ-глюкуронилтрансферазы

Локализированные в основном в ЭР ури-диндифосфат (УДФ)-глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе мик-росомального окисления (рис. 12-4).

В общем виде реакция с участием УДФ-глю-куронилтрансферазы записывается так:

RОH + УДФ-C 6 H 9 O 6 = RO-C 6 H 9 O 6 + УДФ. Сульфотрансферазы

Цитоплазматические сульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SО 3 Н) от 3"-фосфоаденозин-5"-фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам (рис. 12-5).

Реакция с участием сульфотрансферазы в общем виде записывается так:

RОH + ФАФ-SO 3 H = RO-SO 3 H + ФАФ.

Рис. 12-4. Уридиндифосфоглюкуроновая кислота (УДФ-C 6 H 9 O 6).

Ферменты сульфотрансферазы и УДФ-глюку-ронилтрансферазы участвуют в обезвреживании ксенобиотиков, инактивации лекарств и эндогенных биологически активных соединений.

Глутатионтрансферазы

Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтранс-феразы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, простагландинов, билирубина, жёлчных кислот, продуктов ПОЛ.

Известно множество изоформ ГТ с различной субстратной специфичностью. В клетке ГТ в основном локализованы в цитозоле, но имеются варианты ферментов в ядре и митохондриях. Для работы ГТ требуется глутатион (GSH) (рис. 12-6).

Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цистеину карбоксильной группой радикала).

Рис. 12-5. 3"-Фосфоаденозин-5"-фосфосульфат (ФАФ-SО 3 Н).

Рис. 12-6. Глутатион (GSH).

ГТ обладают широкой специфичностью к субстратам, общее количество которых превышает 3000. ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глутатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Обезвреживание, т.е. химическая модификация ксенобиотиков с участием ГТ, может осуществляться тремя различными способами:

Путём конъюгации субстрата R с глутатио-ном (GSH):

R + GSH GSRH

В результате нуклеофильного замещения:

RX + GSH GSR + НХ,

Восстановления органических пероксидов до спиртов:

R-HC-O-OH + 2 GSH R-HC-O-OH + GSSG + Н 2 О.

В реакции: ООН - гидропероксидная группа, GSSG - окисленный глутатион.

Система обезвреживания с участием ГТ и глутатиона играет уникальную роль в формировании резистентности организма к самым различным воздействиям и является наиболее важным защитным механизмом клетки. В ходе биотрансформации некоторых ксенобиотиков под действием ГТ образуются тиоэфиры (конъ-югаты RSG), которые затем превращаются в меркаптаны, среди которых обнаружены токсические продукты. Но конъюгаты GSH с большинством ксенобиотиков менее реакционно-способны и более гидрофильны, чем исходные вещества, а поэтому менее токсичны и легче выводятся из организма (рис. 12-7).

Рис. 12-7. Обезвреживание 1-хлор, 2,4-динитробен-зола с участием глутатиона.

ГТ своими гидрофобными центрами могут нековалентно связывать огромное количество липофильных соединений (физическое обезвреживание), предотвращая их внедрение в липид-ный слой мембран и нарушение функций клетки. Поэтому ГТ иногда называют внутриклеточным альбумином.

ГТ могут ковалентно связывать ксенобиотики, являющиеся сильными электролитами. Присоединение таких веществ - «самоубийство» для ГТ, но дополнительный защитный механизм для клетки.

Ацетилтрансферазы, метилтрансферазы

Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы -SO 2 NH 2 , например в составе сульфаниламидов. Мембранные и цитоплазматические метилтрансферазы с участием SAM метилируют группы -Р=О, -NH 2 и SH-группы ксенобиотиков.

2. Роль эпоксидгидролаз в образовании диолов

Во второй фазе обезвреживания (реакции конъюгации) принимают участие и некоторые другие ферменты. Эпоксидгидролаза (эпоксид-гидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в дио-лы (рис. 12-8). Эпоксиды, образовавшиеся при микросомальном окислении, являются канцерогенами. Они обладают высокой химической активностью и могут участвовать в реакциях неферментативного алкилирования ДНК, РНК, белков (см. раздел 16). Химические модификации этих молекул могут привести к перерождению нормальной клетки в опухолевую.

Рис. 12-8. Обезвреживание бензантрацена. Е 1 - фермент микросомальной системы; Е 2 - эпоксидгидратаза.

В. ГНИЕНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ. ОБЕЗВРЕЖИВАНИЕ И ВЫВЕДЕНИЕ ПРОДУКТОВ ГНИЕНИЯ ИЗ ОРГАНИЗМА

Аминокислоты, невсосавшиеся в клетки кишечника, используются микрофлорой толстой кишки в качестве питательных веществ. Ферменты бактерий расщепляют аминокислоты и превращают их в амины, фенолы, индол, скатол, сероводород и другие ядовитые для организма соединения. Этот процесс иногда называют гниением белков в кишечнике. В основе гниения лежат реакции декарбоксилирования и дезаминирования аминокислот.

Образование и обезвреживание n-крезола и фенола

Под действием ферментов бактерий из аминокислоты тирозина могут образовываться фенол и крезол путём разрушения боковых цепей аминокислот микробами (рис. 12-9).

Всосавшиеся продукты по воротной вене поступают в печень, где обезвреживание фенола и крезола может происходить путём конъюгации с сернокислотным остатком (ФАФС) или с глюку-роновой кислотой в составе УДФ-глюкуроната. Реакции конъюгации фенола и крезола с ФАФС

катализирует фермент сульфотрансфераза (рис. 12-10).

Конъюгация глюкуроновых кислот с фенолом и крезолом происходит при участии фермента УДФ-глюкуронилтрансферазы (рис. 12-11). Продукты конъюгации хорошо растворимы в воде и выводятся с мочой через почки. Повышение количества конъюгатов глюкуроновой кислоты с фенолом и крезолом обнаруживают в моче при увеличении продуктов гниения белков в кишечнике.

Образование и обезвреживание индола и скатола

В кишечнике из аминокислоты триптофана микроорганизмы образуют индол и скатол. Бактерии разрушают боковую цепь триптофана, оставляя нетронутой кольцевую структуру.

Индол образуется в результате отщепления бактериями боковой цепи, возможно, в виде серина или аланина (рис. 12-12).

Скатол и индол обезвреживаются в печени в 2 этапа. Сначала в результате микросомального окисления они приобретают гидроксильную группу. Так, индол переходит в индоксил, а затем вступает в реакцию конъюгации с ФАФС, образуя индоксилсерную кислоту, калиевая соль

Рис. 12-9. Катаболизм тирозина под действием бактерий. Е - бактериальные ферменты.

Рис. 12-10. Конъюгация фенола и крезола с ФАФС. Е - сульфотрансфераза.


Рис. 12-11. Участие УДФ-глюкуронилтрансферазы в обезвреживании крезола и фенола. Е - УДФ-глюку-ронилтрансфераза.

Рис. 12-12. Катаболизм триптофана под действием бактерий. Е - бактериальные ферменты.

которой получила название животного индикана

(рис. 12-13).

Обезвреживание бензойной кислоты

Синтез гиппуровой кислоты из бензойной кислоты и глицина протекает у человека и большинства животных преимущественно в печени (рис. 12-14). Скорость этой реакции отражает функциональное состояние печени.

В клинической практике используют определение скорости образования и выведения гиппуровой кислоты после введения в организм ксенобиотика бензойной кислоты (бензойно-кислого натрия) - проба Квика.

Г. СВЯЗЫВАНИЕ, ТРАНСПОРТ И ВЫВЕДЕНИЕ

КСЕНОБИОТИКОВ

В плазме крови множество как эндогенных, так и экзогенных липофильных веществ транспортируются альбумином и другими белками.

Альбумин - основной белок плазмы крови, связывающий различные гидрофобные вещества. Он может функционировать в качестве белка-переносчика билирубина, ксенобиотиков, лекарственных веществ.

Помимо альбуминов, ксенобиотики могут транспортироваться по крови в составе липопро-теинов, а также в комплексе с кислым α 1 -глико-протеином. Особенность этого гликопротеина

Рис. 12-13. Участие сульфотрансферазы в обезвреживании индола. Е - сульфотрансфераза.

Рис. 12-14. Образование гиппуровой кислоты из бензойной кислоты и глицина. Е - глицинтрансфераза.

состоит в том, что он является индуцируемым белком, участвующим в ответной реакции организма на изменения, происходящие в состоянии стресса, например, при инфаркте миокарда, воспалительных процессах; его количество в плазме увеличивается наряду с другими протеинами. Связывая ксенобиотики, кислый α 1 -гликопро-теин инактивирует их и переносит в печень, где комплекс с белком распадается, и чужеродные вещества обезвреживаются и выводятся из организма.

Участие Р-гликопротеина в выведении ксенобиотиков

Очень важный механизм выведения из клетки гидрофобных ксенобиотиков - функционирование Р-гликопротеина (транспортная АТФ-аза). Р-гликопротеин - фосфогликопротеин с молекулярной массой 170 кД, присутствующий в плазматической мембране клеток многих тканей, в частности почек и кишечника. Полипептидная цепь этого белка содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и два АТФ-связывающих центра (рис. 12-15).

В норме его функция состоит в экскреции ионов хлора и гидрофобных токсичных соединений из клеток.

Когда гидрофобное вещество (например, противоопухолевое лекарство) проникает в клетку, то оно удаляется из неё Р-гликопротеином с затратой энергии (рис. 12-16). Уменьшение количества лекарства в клетке снижает эффективность его применения при химиотерапии онкологических заболеваний.

Д. ИНДУКЦИЯ ЗАЩИТНЫХ СИСТЕМ

Многие ферменты, участвующие в первой и второй фазе обезвреживания, - индуцируемые белки. Ещё в древности царь Митридат знал, что если систематически принимать небольшие дозы яда, можно избежать острого отравления. «Эффект Митридата» основан на индукции определённых защитных систем (табл. 12-3).

В мембранах ЭР печени цитохрома Р 450 содержится больше (20%), чем других мембрано-связанных ферментов. Лекарственное вещество фенобарбитал активирует синтез цитохрома

Рис. 12-15. Строение Р-гликопротеина. Р-гликопротеин - интегральный белок, имеющий 12 трансмембранных доменов, пронизывающих бислой цитоплазматической мембраны. N- и С-концы белка обращены в цитозоль. Участки Р-гликопротеина на наружной поверхности мембраны гликозилированы. Область между шестым и седьмым доменами имеет центры для присоединения АТФ и аутофосфорилирования.

Рис. 12-16. Функционирование Р-гликопротеина.

Заштрихованный овал - противоопухолевое лекарство (гидрофобное вещество).

Р 450 , УДФ-глюкуронилтрансферазы и эпоксид гидролазы. Например, у животных, которым вводили индуктор фенобарбитал, увеличивается площадь мембран ЭР, которая достигает 90% всех мембранных структур клетки, и, как следствие, - увеличение количества ферментов, участвующих в обезвреживании ксенобиотиков или токсических веществ эндогенного происхождения.

При химиотерапии злокачественных процессов начальная эффективность лекарства часто постепенно падает. Более того, развивается множественная лекарственная устойчивость, т.е. устойчивость не только к этому лечебному препарату, но и целому ряду других лекарств. Это происходит потому, что противоопухолевые лекарства индуцируют синтез Р-глико-протеина, глутатионтрансферазы и глутатиона. Использование веществ, ингибирующих или активирующих синтез Р-гликопротеина, а также

ферменты синтеза глутатиона, повышает эффективность химиотерапии.

Металлы являются индукторами синтеза глутатиона и низкомолекулярного белка метал-лотионеина, имеющих SH-групггы, способные связывать их. В результате возрастает устойчивость клеток организма к ядам и лекарствам.

Повышение количества глутатионтрансфераз увеличивает способность организма приспосабливаться к возрастающему загрязнению внешней среды. Индукцией фермента объясняют отсутствие антиканцерогенного эффекта при применении ряда лекарственных веществ. Кроме того, индукторы синтеза глутатионтрансферазы - нормальные метаболиты - половые гормоны, йодтиронины и кортизол. Катехоламины через аденилатциклазную систему фосфорилируют глу-татионтрансферазу и повышают её активность.

Ряд веществ, в том числе и лекарств (например, тяжёлые металлы, полифенолы, S-алкилы глутатиона, некоторые гербициды), ингибируют глутатионтрансферазу.

ii. биотрансформация лекарственных веществ

Лекарства, поступившие в организм, проходят следующие превращения:

Всасывание;

Связывание с белками и транспорт кровью;

Взаимодействие с рецепторами;

Распределение в тканях;

Метаболизм и выведение из организма.

Механизм первого этапа (всасывание) определяется физико-химическими свойствами лекарства. Гидрофобные соединения легко проникают через мембраны простой диффузией, в то время

Таблица 12-3. Индукция систем, обеспечивающих защиту от ксенобиотиков

как лекарственные вещества, нерастворимые в липидах, проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Некоторые нерастворимые крупные частицы могут проникать в лимфатическую систему путём пиноцитоза.

Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением - гидрофобные молекулы перемещаются по крови в комплексе с альбумином, кислым α 1 -гликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку или, являясь аналогами эндогенных веществ, связываться рецепторами клеточной мембраны.

Действие на организм большинства лекарств прекращается через определённое время после их приёма. Прекращение действия может происходить потому, что лекарство выводится из организма либо в неизменённом виде - это характерно для гидрофильных соединений, либо в виде продуктов его химической модификации (биотрансформации).

А. ХАРАКТЕР ИЗМЕНЕНИЙ ПРИ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Биохимические превращения лекарственных веществ в организме человека, обеспечивающие их инактивацию и детоксикацию, являются частным проявлением биотрансформации чужеродных соединений.

В результате биотрансформации лекарственных веществ может произойти:

Инактивация лекарственных веществ, т.е. снижение их фармакологической активности;

Повышение активности лекарственных веществ;

Образование токсических метаболитов.

Инактивация лекарственных веществ

Инактивация лекарственных веществ, как и всех ксенобиотиков, происходит в 2 фазы. Первая фаза - химическая модификация под действием ферментов монооксигеназной системы ЭР. Например, лекарственное вещество барбитурат в ходе биотрансформации превращается в гидроксибарбитурат, который далее участвует в реакции конъюгации с остатком глюкуроновой кислоты. Фермент глюкуронилтрансфераза катализирует образование барбитуратглюкуронида, в качестве источника глюкуроновой кислоты используется УДФ-глюкуронил (рис. 12-17).

В первую фазу обезвреживания под действием монооксигеназ образуются реакционно-способные группы -ОН, -СООН, -NH 2 , -SH и др. Химические соединения, уже имеющие эти группы, сразу вступают во вторую фазу обезвреживания - реакции конъюгации.

Повышение активности лекарств

В качестве примера повышения активности вещества в процессе его превращений в организме можно привести образование дезметилими-прамина из имипрамина. Дезметилимипрамин обладает выраженной способностью ослаблять депрессивное состояние при психических расстройствах (рис. 12-18).

Химические превращения некоторых лекарств в организме приводят к изменению характера их активности. Например, ипразид - антидепрессант, который в результате дезалкилирования превращается в изониазид, обладающий противотуберкулёзным действием (рис. 12-19).

Образование токсических продуктов в результате реакции биотрансформации. В отдельных случаях химические превращения лекарственных средств в организме могут приводить к появлению у них токсических свойств. Так,

Рис. 12-17. Метаболизм барбитуратов в печени. Е 1 - ферменты микросомального окисления; Е 2 - глюку-ронилтрансфераза.

Рис. 12-18. Активация имипрамина в результате реакции деметилирования.

Рис. 12-19. Образование изониазида в ходе дезалкилирования ипраниазида.

Рис. 12-20. Превращение фенацетина в токсический продукт - парафенетидин.

жаропонижающее, болеутоляющее, противовоспалительное средство фенацетин превращается в парафенетидин, вызывающий гипоксию за счёт образования метгемоглобина - неактивной формы Нb (рис. 12-20).

Реакции конъюгации лекарственных веществ

Вторая фаза инактивации - конъюгация (связывание) лекарственных веществ, как подвергшихся каким-либо превращениям на первом этапе, так и нативных препаратов. К продуктам, образованным ферментами микросомального окисления, может присоединяться глицин по карбоксильной группе, глюкуроновая кислота или остаток серной кислоты - по ОН-группе, ацетильный остаток - к NH 2 -группе.

В превращениях второй фазы инактивации лекарственных веществ принимают участие эндогенные соединения, образующиеся в организме с затратой энергии SAM: (АТФ), УДФ-

глюкуронат (УТФ), Ацетил-КоА (АТФ) и др. Поэтому можно сказать, что реакции конъюгации сопряжены с использованием энергии этих макроэргических соединений.

Примером реакции конъюгации может служить глюкуронирование гидроксибарбитурата под действием глюкуронилтрансферазы, описанным ранее (см. рис. 12-17). В качестве примера О-метилирования лекарства можно привести один из этапов биотрансформации препарата метилдофа, нарушающего образование адренер-гического медиатора и применяемого в качестве гипотензивного средства (рис. 12-21).

В неизменённом виде выделяются главным образом высокогидрофильные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся лёгкими в том же виде, в каком были введены.

Рис. 12-21. Биотрансформация лекарственного вещества (метилдофа).

Б. ФАКТОРЫ, ВЛИЯЮЩИЕ НА АКТИВНОСТЬ

ФЕРМЕНТОВ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВ

Лекарственные средства в результате химической модификации, как правило, теряют свою биологическую активность. Таким образом, эти реакции лимитируют во времени действие лекарств. При патологии печени, сопровождающейся снижением активности микросомальных ферментов, продолжительность действия ряда лекарственных веществ увеличивается.

Некоторые препараты снижают активность монооксигеназной системы. Например, левоми-цетин и бутадион ингибируют ферменты мик-росомального окисления. Антихолинэстеразные средства, ингибиторы моноаминооксидазы, нарушают функционирование фазы конъюгации, поэтому они пролонгируют эффекты препаратов, которые инактивируются этими ферментами. Кроме того, скорость каждой из реакций биотрансформации лекарственного вещества зависит от генетических, физиологических факторов и экологического состояния окружающей среды.

Возрастные особенности

Чувствительность к лекарственным средствам меняется в зависимости от возраста. Например, у новорождённых активность метаболизма лекарств в первый месяц жизни существенно отличается от взрослых. Это связано с недостаточностью многих ферментов, участвующих в биотрасформации лекарственных веществ, функции почек, повышенной проницаемостью гематоэнцефалического барьера, недоразвитием ЦНС. Так, новорождённые более чувствительны к некоторым веществам, влияющим на ЦНС (в частности, к морфину). Очень токсичен для них левомицетин; это объясняется тем, что в печени

у новорождённых малоактивны ферменты, необходимые для его биотрансформации.

В пожилом возрасте метаболизм лекарственных веществ протекает менее эффективно: снижается функциональная активность печени, нарушается скорость экскреции препаратов почками. В целом чувствительность к большинству лекарственных средств в пожилом возрасте повышена, в связи с чем их доза должна быть снижена.

Генетические факторы

Индивидуальные различия в метаболизме ряда препаратов и в реакциях на препараты объясняют генетическим полиморфизмом, т.е. существованием в популяции изоформ некоторых ферментов биотрансформации.

В ряде случаев повышенная чувствительность к лекарственным средствам может быть обусловлена наследственной недостаточностью некоторых ферментов, участвующих в химической модификации. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6-8 ч и более (в обычных условиях дитилин действует в течение 5-7 мин). Известно, что скорость ацетилирования противотуберкулёзного средства изониазида варьирует довольно широко. Выделяют лиц с быстрой и медленной метаболизирующей активностью. Считают, что у лиц с медленной инактивацией изониазида нарушена структура белков, регулирующих синтез фермента ацетилтрансферазы, обеспечивающего конъюгацию изониазида с ацетильным остатком.

Факторы окружающей среды

Существенное влияние на метаболизм лекарственных веществ в организме оказывают

также факторы окружающей среды, такие как ионизирующая радиация, температура, состав пищи и особенно различные химические вещества (ксенобиотики), в том числе и сами лекарственные вещества.

III. МЕТАБОЛИЗМ ЭТАНОЛА В ПЕЧЕНИ

Катаболизм этилового спирта осуществляется главным образом в печени. Здесь окисляется от 75% до 98% введённого в организм этанола.

Окисление алкоголя - сложный биохимический процесс, в который вовлекаются основные метаболические процессы клетки. Превращение этанола в печени осуществляется тремя путями с образованием токсического метаболита - ацет-альдегида (рис. 12-22).

А. ОКИСЛЕНИЕ ЭТАНОЛА NAD-ЗАВИСИМОЙ АЛКОГОЛЬДЕГИДРОГЕНАЗОЙ

Основную роль в метаболизме этанола играет цинксодержащий NAD + -зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции пpoиcxoдит дегидрирование этанола, образуются ацеталь-дегид и восстановленный кофермент NADH. Алкогольдегидрогеназа катализирует обратимую реакцию, направление которой зависит от концентрации ацетальдегида и соотношения NADH/NAD + в клетке.

С 9 H 5 ОН + NAD + ↔ CH 3 CHO + NADH + H + .

Фермент алкогольдегидрогеназа - димер, состоящий из идентичных или близких по первичной структуре полипептидных цепей, кодируемых аллелями одного гена. Существуют 3 изоформы алкогольдегидрогеназы (АДГ): АДГ 1 , АДГ 2 , АДГ 3 , различающиеся по строению протомеров, локализации и активности. Для европейцев характерно присутствие изоформ АДГ 1 и АДГ 3 . У некоторых восточных народов преобладает изоформа АДГ 2 , характеризующаяся высокой активностью, это может быть причиной их повышенной чувствительности к алкоголю. При хроническом алкоголизме количество фермента в печени не увеличивается, т.е. он не является индуцируемым ферментом.

Б. ОКИСЛЕНИЕ ЭТАНОЛА ПРИ УЧАСТИИ ЦИТОХРОМ Р 450 -ЗАВИСИМОЙ МИКРОСОМАЛЬ-НОЙ ЭТАНОЛОКИСЛЯЮЩЕЙ СИСТЕМЫ

Цитохром Р 450 -зависимая микросомальная эта-нолокисляющая система (МЭОС) локализована в мембране гладкого ЭР гепатоцитов. МЭОС играет незначительную роль в метаболизме небольших количеств алкоголя, но индуцируется этанолом, другими спиртами, лекарствами типа барбитуратов и приобретает существенное значение при злоупотреблении этими веществами. Этот путь окисления этанола происходит при участии одной из изоформ Р 450 - изофермента Р 450 II Е 1 . При хроническом алкоголизме окисление этанола ускоряется на 50-70% за счёт гипертрофии ЭР и индукции ци-тохрома Р 450 II Е 1 .

C 9 H 5 OH + NADPH + Н + + О 2 → CH 3 CHO + NADP + + 2 Н 2 О.

Рис. 12-22. Метаболизм этанола. 1 - окисление этанола NAD + -зависимой алкогольдегидрогеназой (АДГ); 9 - МЭОС - микросомальная этанолокисляющая система; 3 - окисление этанола каталазой.

Кроме основной реакции, цитохром Р 450 катализирует образование активных форм кислорода (О 2 - , Н 2 О 2), которые стимулируют ПОЛ в печени и других органах (см. раздел 8).

в. окисление этанола каталазой

Второстепенную роль в окислении этанола играет каталаза, находящаяся в пероксисомах цитоплазмы и митохондрий клеток печени. Этот фермент расщепляет примерно 2% этанола, но при этом утилизирует пероксид водорода.

СН 3 СН 2 ОН + Н 2 О 2 → СН 3 СНО +2 Н 2 О.

г. метаболизм и токсичность ацетальдегида

Ацетальдегид, образовавшийся из этанола, окисляется до уксусной кислоты двумя ферментами: FAD-зависимой альдегидоксидазой и NАD + -зависимой ацетальдегиддегидрогеназой (АлДГ).

CH 3 CHO + О 2 + Н 2 О → CH 3 COOH +Н 2 О 2 .

Повышение концентрации ацетальдегида в клетке вызывает индукцию фермента альдегид-оксидазы. В ходе реакции образуются уксусная кислота, пероксид водорода и другие активные формы кислорода, что приводит к активации

Другой фермент ацетальдегиддегидрогеназа (АлДГ) окисляет субстрат при участии кофер-мента NАD + .

CH 3 CHO + Н 2 О + NAD + → CH 3 COOH + + NADH + H + .

Полученная в ходе реакции уксусная кислота активируется под действием фермента ацетил-КоА-синтетазы. Реакция протекает с использованием кофермента А и молекулы АТФ. Образовавшийся ацетил-КоА, в зависимости от соотношения АТФ/АДФ и концентрации окса-лоацетата в митохондриях гепатоцитов, может «сгорать» в ЦТК, идти на синтез жирных кислот или кетоновых тел.

В разных тканях организма человека встречаются полиморфные варианты АлДГ. Они характеризуются широкой субстратной специфичностью, разным распределением по клеткам тканей (почки, эпителий, слизистая оболочка

желудка и кишечника) и в компартментах клетки. Например, изоформа АлДГ, локализованная в митохондриях гепатоцитов, обладает более высоким сродством к ацетальдегиду, чем цито-зольная форма фермента.

Ферменты, участвующие в окислении этанола, - алкогольдегидрогеназа и АлДГ по разному распределены: в цитозоле - 80%/20% и митохондриях - 20%/80%. При поступлении больших доз алкоголя (более 2 г/кг) из-за разных скоростей окисления этанола и ацетальдегида в цитозоле резко повышается концентрация последнего. Ацетальдегид - очень реакционно-способное соединение; он неферментативно может ацетилировать SH-, NН 2 -группыбелков и других соединений в клетке и нарушать их функции. В модифицированных (ацетилиро-ванных) белках могут возникать «сшивки», нехарактерные для нативной структуры (например, в белках межклеточного матрикса - эластине и коллагене, некоторых белках хроматина и липопротеинов, формирующихся в печени). Ацетилирование ядерных, цитоплаз-матических ферментов и структурных белков приводит к снижению синтеза экспортируемых печенью в кровь белков, например альбумина, который, удерживая поддерживает коллоидно-осмотическое давление, а также участвует в транспорте многих гидрофобных веществ в крови (см. раздел 14). Нарушение функций альбумина в сочетании с повреждающим действием ацетальдегида на мембраны сопровождается поступлением в клетки по градиенту концентрации ионов натрия и воды, происходит осмотическое набухание этих клеток и нарушение их функций.

Активное окисление этанола и ацетальдегида приводит к увеличению отношения NADH/ NAD + , что снижает активность NAD + -зависи-мых ферментов в цитозоле и менее значительно в митохондриях.

Равновесие следующей реакции смещается вправо:

Дигидроксиацетонфосфат + NADH + H + ↔ Глице-рол-3-фосфат + NAD+,

Пируват + NADH + H + ↔ Лактат +NAD + .

Восстановление дигидроксиацетонфосфата, промежуточного метаболита гликолиза и глю-конеогенеза, приводит к снижению скорости

глюконеогенеза. Образование глицерол-3-фос-фата повышает вероятность синтеза жира в печени. Увеличение концентрации NADH по сравнению с NAD + (NADH>NAD +) замедляет реакцию окисления лактата, увеличивается соотношение лактат/пируват и ещё больше снижается скорость глюконеогенеза (см. раздел 7). В крови возрастает концентрация лактата, это приводит к гиперлактацидемии и лактоацидозу

(рис. 12-23).

NADH окисляется ферментом дыхательной цепи NADH-дегидрогеназой. Возникновение трансмембранного электрического потенциала на внутренней митохондриальной мембране не приводит к синтезу АТФ в полном объёме. Этому препятствует нарушение структуры внутренней мембраны митохондрий, вызванное мембранотропным действием этилового спирта

и повреждающим действием ацетальдегида на мембраны.

Можно сказать, что ацетальдегид опосредованно активирует ПОЛ, так как связывая SH-группы глутатиона, он снижает количество активного (восстановленного) глутатиона в клетке, который необходим для функционирования фермента глутатионпероксидазы (см. раздел 8), участвующего в катаболизме H 2 О 2 . Hакопление свободных радикалов приводит к активации ПОЛ мембран и нарушению структуры липидного бислоя.

На начальных стадиях алкоголизма окисление ацетил-КоА в ЦТК - основной источник энергии для клетки. Избыток ацетил-КоА в составе цитрата выходит из митохондрий, и в цитоплазме начинается синтез жирных кислот. Этот процесс, помимо АТФ, требует участия NADPH,

Рисунок 12-23. Эффекты этанола в печени. 1→2→3 - окисление этанола до ацетата и превращение его в ацетил-КоА

(1 - реакция катализируется алкогольдегидрогеназой, 2 - реакция катализируется АлДГ). Скорость образования ацетальдегида (1)часто при приёме большого количества алкоголя выше, чем скорость его окисления (9), поэтому ацетальальдегид накапливается и оказывает влияние на синтез белков (4), ингибируя его, а также понижает концентрацию восстановленного глутатиона (5), в результате чего активируется ПОЛ. Скорость глюконеогенеза (6) снижается, так как высокая концентрация NADH образованного в реакциях окисления этанола (1, 9), ингибирует глюконеогенез (6). Лактат выделяется в кровь (7), и развивается лактоацидоз. Увеличение концентрации NADH замедляет скорость ЦТК; ацетил-КоА накапливается, активируется синтез кетоновых тел (кетоз) (8). Окисление жирных кислот также замедляется (9), увеличивается синтез жира (10), что приводит к ожирению печени и гипертриацилглицеролемии.

который образуется при окислении глюкозы в пентозофосфатном цикле. Из жирных кислот и глицерол-3-фосфата образуются ТАГ, которые в составе ЛПОHП секретируются в кровь. Повышенная продукция ЛПОHП печенью приводит к гипертриацижлицеролемии. При хроническом алкоголизме снижение синтеза фосфолипидов и белков в печени, в том числе и апобелков, участвующих в формировании ЛПОHП, вызывает внутриклеточное накопление ТАГ и ожирение печени.

Однако в период острой алкогольной интоксикации, несмотря на наличие большого количества ацетил-КоА, недостаток оксало-ацетата снижает скорость образования цитрата. В этих условиях избыток ацетил-КоА идёт на синтез кетоновых тел, которые выходят в кровь. Повышение в крови концентрации лактата, ацетоуксусной кислоты и β-гидроксибутирата служит причиной метаболического ацидоза при алкогольной интоксикации.

Как уже было сказано ранее, реакция образования ацетальдегида из этанола протекает под действием алкогольдегидрогеназы. Поэтому при повышении концентрации ацетальдегида и NADH в клетках печени направление реакции меняется - образуется этанол. Этанол - мемб-ранотропное соединение, он растворяется в ли-пидном бислое мембран и нарушает их функции. Это негативно отражается на трансмембранном переносе веществ, межклеточных контактах, взаимодействиях рецепторов клетки с сигнальными молекулами. Этанол может проходить через мембраны в межклеточное пространство и кровь и далее в любую клетку организма.

д. влияние этанола и ацетальдегида на метаболизм ксенобиотиков и лекарств в печени

Характер влияния этанола на метаболизм ксенобиотиков и лекарств зависит от стадии алкогольной болезни: начальная стадия алкоголизма, хронический алкоголизм или острая форма алкогольной интоксикации.

Микросомальная этанолокисляющая система (МЭОС) наряду с метаболизмом этанола участвует в детоксикации ксенобиотиков и лекарств. На начальной стадии алкогольной болезни биотрансформация лекарственных веществ протекает более активно вследствие индукции ферментов системы. Этим объясняют феномен лекарственной «устойчивости». Однако при острой интоксикации этиловым спиртом тормозится биотрансформация лекарственных веществ. Этанол конкурирует с ксенобиотиками за связывание с цитохромом Р 450 II Е 1 , вызывая гиперчувствительность (лекарственную «неустойчивость») к некоторым принятым одновременно с ним лекарственным препаратам.

Кроме того, у людей, страдающих хроническим алкоголизмом, наблюдают избирательную индукцию изоформы Р 450 II Е 1 и конкурентное ингибирование синтеза других изоформ, принимающих участие в метаболизме ксенобиотиков и лекарств. При злоупотреблении алкоголем индуцируется также синтез глюку-ронил-трансфераз, но снижается образование УДФ-глюкуроната.

Алкогольдегидрогеназа обладает широкой субстратной специфичностью и может окислять разные спирты, в том числе и метаболиты сердечных гликозидов - дигитоксина, дигоксина и гитоксина. Конкуренция этанола с сердечными гликозидами за активный центр алкогольде-гидрогеназы приводит к снижению скорости биотрансформации этой группы лекарств и повышает опасность их побочного эффекта у лиц, принимающих большие дозы алкоголя.

Повышение концентрации ацетальдегида вызывает целый ряд нарушений в структуре белков (ацетилирование), мембран (ПОЛ), модификацию глутатиона, необходимого для одного из самых важных ферментов обезвреживания ксенобиотиков - глутатионтрансферазы и фермента антиоксидазной защиты глутатионперок-сидазы. Таким образом, представленные данные свидетельствуют, что алкогольное поражение печени сопровождается нарушением важнейшей функции этого органа - детоксикационной.

Преферанская Нина Германовна
Ст. преподаватель кафедры фармакологии фармацевтического факультета ММА им. И.М. Сеченова

Гепатопротекторы препятствуют разрушению клеточных мембран, предотвращают повреждение печеночных клеток продуктами распада, ускоряют репаративные процессы в клетках, стимулируют регенерацию гепатоцитов, восстанавливают их структуру и функции. Они применяются для лечения острых и хронических гепатитов, жировой дистрофии печени, цирроза печени, при токсических повреждениях печени, в том числе связанных с алкоголизмом, при интоксикации промышленными ядами, лекарственными препаратами, тяжелыми металлами, грибами и других поражениях печени.

Одним из ведущих патогенетических механизмов поражения гепатоцитов является избыточное накопление свободных радикалов и продуктов перекисного окисления липидов при воздействии токсинов экзогенного и эндогенного происхождения, приводя, в конечном итоге, к повреждению липидного слоя клеточных мембран и разрушению клеток печени.

Лекарственные средства, применяемые для лечения заболеваний печени, обладают разными фармакологическими механизмами защитного действия. Гепатопротекторное действие большинства препаратов связывают с ингибированием ферментативного перекисного окисления липидов, с их способностью нейтрализовать различные свободные радикалы, оказывая при этом антиоксидантный эффект. Другие препараты являются строительным материалом липидного слоя клеток печени, оказывают мембраностабилизирующий эффект и восстанавливают структуру мембран гепатоцитов. Третьи индуцируют микросомальные ферменты печени, повышают скорость синтеза и активность этих ферментов, способствуют усилению биотрансформации веществ, активируют метаболические процессы, что способствует быстрому выведению из организма чужеродных токсичных соединений. Четвертые препараты обладают широким спектром биологической активности, содержат комплекс витаминов и незаменимых аминокислот, повышают устойчивость организма к воздействию неблагоприятных факторов, уменьшают токсические эффекты, в том числе и после принятия алкоголя и др.

Выделить препараты с каким-то одним механизмом действия очень трудно, как правило, эти препараты обладают одновременно несколькими из перечисленных выше механизмов. В зависимости от происхождения они подразделяются на препараты: растительного происхождения, синтетические лекарственные средства, животного происхождения, гомеопатические и биологически активные добавки к пище. По составу их различают на монокомпонентные и комбинированные (комплексные) препараты.

Лекарственные средства, преимущественно ингибирующие перекисное окисление липидов

К ним относятся препараты и фитопрепараты плодов расторопши пятнистой (остро-пестрой). Растительные флавоноидные соединения, выделенные из плодов и млечного сока расторопши пятнистой, содержат комплекс изомерных полигидроксифенолхроманонов, главными из которых являются силибинин, силидианин, силикристин и др. Свойства расторопши известны на протяжении более 2000 лет, она использовалась в Древнем Риме для лечения различных отравлений. Гепатопротекторное действие биофлавоноидов, выделенных из плодов расторопши пятнистой обусловлено его антиоксидантными, мембраностабилизирующими свойствами и стимуляцией репаративных процессов в печеночных клетках.

Основным активным биофлавоноидом в расторопше пятнистой является силибинин. Он оказывает гепатопротекторное и антитоксическое действие. Взаимодействует с мембранами гепатоцитов и стабилизирует их, предотвращая потерю трансаминаз; связывает свободные радикалы, ингибирует процессы перекисного окисления липидов, предупреждает разрушение клеточных структур, при этом уменьшается образование малонового диальдегида и поглощение кислорода. Препятствует проникновению в клетку ряда гепатотоксических веществ (в частности, яда бледной поганки). Стимулируя РНК-полимеразу, увеличивает биосинтез белков и фосфолипидов, ускоряет регенерацию поврежденных гепатоцитов. При алкогольных поражениях печени блокирует выработку ацетальдегида и связывает свободные радикалы, сохраняет запасы глутатиона, способствующего процессам детоксикации в гепатоцитах.

Силибинин (Silibinin). Синонимы: Силимарин, Силимарин Седико быстрорастворимый, Силегон, Карсил, Легалон. Выпускается в драже 0,07 г, капсулах 0,14 г и суспензии 450 мл. Силимарин - это смесь изомерных флавоноидных соединений (силибинина, силидианина, силикристина) с преобладающим содержанием силибинина. Биофлавоноиды активируют синтез белков и ферментов в гепатоцитах, воздействуют на метаболизм в гепатоцитах, оказывают стабилизирующее воздействие на мембрану гепатоцитов, ингибируют дистрофические и потенцируют регенеративные процессы в печени. Силимарин препятствует накоплению гидроперекисей липидов, уменьшает степень повреждения клеток печени. Заметно снижает повышенный уровень трансаминаз в сыворотке крови, уменьшает степень жировой дистрофии печени. Стабилизируя клеточную мембрану гепатоцитов, замедляет поступление в них токсических продуктов метаболизма. Силимарин активирует обмен веществ в клетке, результатом чего является нормализация белоксинтетической и липотропной функции печени. Улучшаются показатели иммунологической реактивности организма. Силимарин практически не растворяется в воде. Благодаря слабокислым свойствам, может образовывать соли со щелочными веществами. Более 80% препарата выделяется с желчью в виде глюкуронидов и сульфатов. В результате расщепления кишечной микрофлорой выделившегося с желчью силимарина до 40% вновь реабсорбируется, что создает его кишечно-печеночный кругооборот.

Силибор - препарат, содержащий сумму флавоноидов из плодов расторопши пятнистой (Silibbum marianum L). Форма выпуска: таблетки, покрытые оболочкой по 0,04 г.

Силимар , сухой очищенный экстракт, получаемый из плодов расторопши пятнистой (Silybum marianum L), содержит флаволигнаны (силибинин, силидианин и др.), а также другие вещества, в основном флавоноиды, 100 мг в одной таблетке. Силимар обладает рядом свойств, обусловливающих его защитное действие на печень при воздействии различных повреждающих агентов. Он проявляет антиоксидантные и радиопротекторные свойства, усиливает детоксикационную и внешнесекреторную функции печени, оказывает спазмолитическое и небольшое противовоспалительное действие. При острой и хронической интоксикации, вызываемой четыреххлористым углеродом, Силимар оказывает выраженное гепатозащитное действие: подавляет нарастание индикаторных ферментов, тормозит процессы цитолиза, препятствует развитию холестаза. У больных с диффузными поражениями печени, в том числе алкогольного генеза, препарат нормализует функционально-морфологические показатели гепатобилиарной системы. Силимар уменьшает жировую дегенерацию клеток печени и ускоряет их регенерацию за счет активации РНК-полимеразы.

Гепатофальк планта - комплексный препарат, содержащий экстракты из плодов расторопши, чистотела и термелика. Фармакологический эффект комбинированного растительного препарата определяется совокупным действием его компонентов. Препарат оказывает гепатопротективное, спазмолитическое, анальгезирующее, желчегонное (холеретическое и холекинетическое) действие. Стабилизирует мембраны гепатоцитов, повышает синтез белка в печени; оказывает отчетливое спазмолитическое действие на гладкую мускулатуру; обладает антиоксидантной, противовоспалительной и антибактериальной активностью. Препятствует проникновению в клетку ряда гепатотоксических веществ. При алкогольных поражениях печени блокирует выработку ацетальдегида и связывает свободные радикалы, сохраняет запасы глутатиона, способствующего процессам детоксикации в гепатоцитах. Алкалоид хелидонин, содержащийся в чистотеле, обладает спазмолитическим, анальгезирующим и желчегонным действием. Куркумин - действующее вещество термелика яванского оказывает желчегонное (как холеретическое, так и холекинетическое) и противовоспалительное действие, снижает насыщенность желчи холестерином, обладает бактерицидной и бактериостатической активностью в отношении золотистого стафилококка, сальмонелл и микобактерий.

Гепабене содержит экстракт расторопши пятнистой со стандартизированным количеством флавоноидов: 50 мг силимарина и не менее 22 мг силибинина, а также экстракт дымянки аптечной, содержащей не менее 4,13 мг алкалоидов дымянки аптечной в пересчете на протопин. Лечебные свойства Гепабене определяются оптимальным сочетанием гепатопротекторного действия экстракта расторопши пятнистой и нормализующего секрецию желчи и моторику желчевыводящих путей влияния дымянки аптечной Основным действующим веществом дымянки лекарственной является производное фумаровой кислоты - алкалоид протопин. Нормализует как слишком слабое, так и повышенное желчевыделение, снимает спазм сфинктера ОДДИ, нормализует моторную функцию желчевыводящих путей при их дискинезии, как по гиперкинетическому, так и по гипокинетическому типу. Эффективно восстанавливает дренажную функцию желчевыводящих путей, предупреждая развитие застоя желчи и образование конкрементов в желчном пузыре. При приеме препарата может возникать послабляющее действие и увеличиваться диурез. Выпускается в капсулах. Применяют внутрь, во время еды по одной капсуле 3 раза в сутки.

Сибектан , в одной таблетке которого содержится: экстракт из пижмы, жома плодов расторопши пятнистой, зверобоя, березы по 100 мг. Препарат оказывает мембраностабилизирующее, регенерирующее, антиоксидантное, гепатопротекторное и желчегонное действие. Нормализует липидный и пигментный обмен, усиливает детоксикационную функцию печени, тормозит процессы липопероксидации в печени, стимулирует регенерацию слизистых оболочек и нормализует моторику кишечника. Принимают за 20-40 мин. до еды по 2 таблетки 4 раза в сутки. Курс 20-25 дней.

Лекарственные средства, преимущественно восстанавливающие структуру мембран гепатоцитов и оказывающие мембраностабилизирующий эффект

Повреждение гепатоцитов часто сопровождается нарушением целостности мембран, это приводит к попаданию ферментов из поврежденной клетки в цитоплазму. Наряду с этим повреждаются межклеточные связи, ослабевает связь между отдельными клетками. Нарушаются важные процессы для организма - всасывание триглицеридов, необходимых для образования хиломикронов и мицелл, снижается желчеобразование, продукция белков, нарушается обмен веществ и способность гепатоцитов выполнять барьерную функцию. При приеме препаратов этой подгруппы происходит ускорение регенерации клеток печени, усиливается синтез белков и фосфолипидов, которые являются пластическим материалом мембран гепатоцитов, нормализуется обмен фосфолипидов клеточных мембран. Эти препараты проявляют антиоксидантное действие, т.к. в печени взаимодействуют со свободными радикалами и переводят их в неактивную форму, что препятствует дальнейшему разрушению клеточных структур. В состав данных препаратов входят эссенциальные фосфолипиды, которые являются пластическим материал для поврежденных клеток печени, состоящих на 80% из гепатоцитов.

Эссенциале Н и эссенциале форте Н . Выпускается в капсулах, содержащих по 300 мг «эссенциальных фосфолипидов», для приема внутрь во время еды. Препарат обеспечивает печень высокой дозой готовых к усвоению фосфолипидов, которые проникают в клетки печени, внедряются в мембраны гепатоцитов и нормализуют ее функции, в том числе и детоксикационную. Восстанавливается клеточная структура гепатоцитов, тормозится формирование соединительной ткани в печени, все это способствует регенерации печеночных клеток. Ежедневный прием препарата способствует активации фосфолипидзависимых ферментных систем печени, уменьшает уровень энергозатрат, улучшает метаболизм липидов и белков, преобразует нейтральные жиры и холестерин в легко метаболизирующиеся формы, стабилизируются физико-химические свойства желчи. При острых и тяжелых формах поражения печени (печеночная предкома и кома, некроз клеток печени и токсические ее поражения, при операциях в области гепатобиларной зоны и др.) используют раствор для внутривенного медленного введения в ампулах из темного стекла по 5 мл, содержащий 250 мг «эссенциальных фосфолипидов». Вводят 5-10 мл в день, при необходимости дозу увеличивают до 20 мл/день. Нельзя смешивать с другими препаратами.

Эссливер форте - комбинированный препарат, содержащий эссенциальные фосфолипиды 300 мг и комплекс витаминов: тиамина мононитрат, рибофлавина, пиридоксина, токоферола ацетата по 6 мг, никотинамида 30 мг, цианкобаламина 6 мкг, оказывает гепатопротекторное, гиполипидемическое и гипогликемическое действие. Регулирует проницаемость биомембран, активность мембраносвязанных ферментов, обеспечивая физиологическую норму процессов окислительного фосфорилирования в клеточном метаболизме. Восстанавливает мембраны гепатоцитов путем структурной регенерации и методом конкурентного ингибирования перекисных процессов. Ненасыщенные жирные кислоты, встраиваясь в биомембраны, принимают на себя токсикогенные воздействия вместо мембранных липидов печени и нормализуют функцию печени, повышают ее дезинтоксикационную роль.

Фосфоглив - в одной капсуле содержится 0,065 г фосфатидилхолина и 0,038 г динатриевой соли глицерризиновой кислоты. Препарат восстанавливает клеточные мембраны гепатоцитов с помощью глицерофосфолипидов. В молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин, все необходимые вещества для построения клеточных мембран. Молекула глициризиновой кислоты схожа со строением гормонов коры надпочечников (например, кортизоном), за счет этого она обладает противовоспалительными и антиаллергическими свойствами, обеспечивает эмульгирование фосфатидилхолина в кишечнике. Содержащаяся в ее структуре глюкуроновая кислота связывает и инактивирует образующиеся токсичные продукты. Применяют внутрь по 1-2 капсулы 3 раза в сутки в течение месяца. Дозу можно увеличит до 4 капсул за один прием и 12 капсул в сутки.

Ливолин форте - комбинированный препарат, в одной капсуле которого содержится 857,13 мг лецитина (300 мг фосфатидилхолина) и комплекс необходимых витаминов: Е, В1, В6 - по 10 мг, В2 - 6 мг, В12 - 10 мкг и РР - 30 мг. Входящие в состав фосфолипиды являются основными элементами в структуре клеточной оболочки и митохондрий. При применении препарата регулируется липидный и углеводный обмен, улучшается функциональное состояние печени, активируется ее важнейшая детоксикационная функция, сохраняется и восстанавливается структура гепатоцитов, тормозится формирование соединительной ткани печени. Входящие витамины выполняют функцию коэнзимов в процессах окислительного декарбоксилирования, дыхательного фосфорилирования, обладают антиоксидантным действием, защищают мембраны от воздействия фосфолипаз, препятствуют образованию перекисных соединений и ингибируют свободные радикалы. Применяют по 1-2 капсулы 2-3 раза в день во время еды, курс 3 месяца, при необходимости курс повторяют.

Препараты, улучшающие метаболические процессы в организме

Они обеспечивают детоксикацию клеток, стимулируют регенерацию клеток за счет повышения активности микросомальных ферментов печени, улучшения микроциркуляции и питания клеток, а также улучшают метаболические процессы в гепатоцитах.

Средство, влияющее на метаболические процессы, Тиоктовая кислота (липоевая кислота, липамид, тиоктацид). Фармакологическое действие - гиполипидемическое, гепатопротективное, гипохолестеринемическое, гипогликемическое. Тиоктовая кислота участвует в окислительном декарбоксилировании пировиноградной и a-кетокислот. По характеру биохимического действия она близка к витаминам группы В. Участвует в регулировании липидного и углеводного обмена, стимулирует обмен холестерина, улучшает функцию печени. Применяют внутрь, в начальной дозе 200 мг (1 таблетка) 3 раза в сутки, поддерживающая доза 200-400 мг/сут. При применении препарата могут наблюдаться диспепсия, аллергические реакции: крапивница, анафилактический шок; гипогликемия (в связи с улучшением усвоения глюкозы). При тяжелых формах диабетической полинейропатии вводят в/в по 300-600 мг или в/в капельно, в течение 2-4 нед. В дальнейшем переходят на поддерживающую терапию таблетированными формами - 200-400 мг/сут. После в/в введения возможны побочные нежелательные реакции - такие, как развитие судорог, диплопии, точечных кровоизлияний в слизистые и кожу, нарушение функции тромбоцитов; при быстром введении ощущение тяжести в голове, затруднение дыхания.

Альфа-липоевая кислота является коферментом окислительного декарбоксилирования пировиноградной кислоты и альфа-кетокислот, нормализует энергетический, углеводный и липидный обмены, регулирует метаболизм холестерина. Улучшает функции печени, снижает повреждающее влияние на нее эндогенных и экзогенных токсинов. Применяют внутрь в/м и в/в. При в/м инъекции доза, вводимая в одно место, не должна превышать 2 мл. В/в введение капельное, предварительно разбавив 1-2 мл 250 мл 0,9% раствора натрия хлорида. При тяжелых формах полинейропатии - в/в по 12-24 мл ежедневно в течение 2-4 нед., затем переходят на поддерживающую терапию внутрь 200-300 мг/сут. Препарат светочувствителен, поэтому ампулы из упаковки необходимо доставать только непосредственно перед использованием. Раствор для инфузии пригоден для введения в течение 6 час., если он защищен от воздействия света.

Эспа-липон выпускается в таблетках, покрытых оболочкой и в растворах для инъекций. Одна таблетка содержит 200 мг или 600 мг, этилендиаминовой соли альфа-липоевой кислоты, а в 1 мл раствора его содержится 300 мг или 600 мг, ампулы соответственно по 12 мл и 24 мл. При применении препарата происходит стимулирование окислительного декарбоксилирования пировиноградной кислоты, a-кетокислот, регулирование липидного и углеводного обмена, улучшаются функции работы печени, происходит защита от неблагоприятного действия эндо- и экзо-факторов.

Адеметионин (Гептрал) является предшественником физиологических тиоловых соединений, участвующих в многочисленных биохимических реакциях. Это эндогенное вещество, обнаруженное почти во всех тканях и жидкостях организма, получено синтетическим путем, обладает гепатопротективным, детоксикационным, регенерирующим, антиоксидантным, антифиброзирующим и нейропротекторным действием. Его молекула включена в большинство биологических реакций, в т.ч. как донор метильной группы в реакциях метилирования, в составе липидного слоя клеточной мембраны (трансметилирование); как предшественник эндогенных тиоловых соединений - цистеина, таурина, глютатиона, коэнзима А (транссульфатирование); как предшественник полиаминов - путресцина, стимулирующего регенерацию клеток, пролиферацию гепатоцитов, спермидина, спермина, входящих в структуру рибосом (аминопропилирование). Обеспечивает окислительно-восстановительный механизм клеточной детоксикации, стимулирует детоксикацию желчных кислот - повышает содержание в гепатоцитах конъюгированных и сульфатированных желчных кислот. Стимулирует синтез в них фосфатидилхолина, повышает подвижность и поляризацию мембран гепатоцитов. Гептрал включается в биохимические процессы организма, одновременно стимулируя выработку эндогенного адеметионина, в первую очередь в печени и мозге. Проникая через гематоэнцефалический барьер, проявляет антидепрессивное действие, которое развивается в первую неделю и стабилизируется в течение второй недели лечения. Терапия гептралом сопровождается исчезновением астенического синдрома у 54% пациентов и уменьшением его интенсивности у 46% больных. Антиастенический, антихолестатический и гепатопротективный эффекты сохранялись в течение 3 месяцев после прекращения лечения. Выпускается в таблетках по 0,4 г лиофилизированного порошка. Поддерживающая терапия внутрь 800-1600 мг/сут. между приемами пищи, глотать, не разжевывая, желательно в первой половине дня. При интенсивной терапии в первые 2-3 недели лечения назначают в/в 400-800 мг/сут. (очень медленно) или в/м, порошок растворяют только в специальном прилагаемом растворителе (раствор L-лизина). Основные побочные эффекты при приеме внутрь - изжога, боль или неприятные ощущения в эпигастральной области, диспептические явления, возможны аллергические реакции.

Орнитина аспартат (гепа-Мерц гранулы) . Фармакологическое действие - дезинтоксикационное, гепатопротективное, способствует нормализации КОС организма. Участвует в орнитиновом цикле мочевинообразования (образование мочевины из аммиака), утилизирует аммонийные группы в синтезе мочевины и снижает концентрацию аммиака в плазме крови. При приеме препарата активируется выработка инсулина и соматотропного гормона. Препарат выпускается в гранулах для приготовления растворов, для приема внутрь. 1 пакетик содержит 3 г орнитина аспартата. Применяют внутрь, по 3-6 г 3 раза в сутки после еды. Концентрат для инфузий, в ампулах по 10 мл, в 1 мл которого содержится 500 мг орнитина аспартата. Вводят в/м по 2-6 г/сут. или в/в струйно по 2-4 г/сут.; кратность введения 1-2 раза в сутки. При необходимости в/в капельно: 25-50 г препарата разводят в 500-1500 мл изотонического раствора натрия хлорида, 5% раствора глюкозы или дистиллированной воды. Максимальная скорость инфузии 40 кап./мин. Продолжительность курса лечения определяется динамикой концентрации аммиака в крови и состоянием больного. Курс лечения можно повторять каждые 2-3 мес.

Гепасол А , комбинированный препарат, в 1 л раствора содержится: 28,9 г L-аргинина, 14,26 г L-яблочной кислоты, 1,33 г L-аспарагиновой кислоты, 100 мг никотинамида, 12 мг рибофлавина и 80 мг пиридоксина.

Действие основано на влиянии L-аргинина и L-яблочной кислоты на процессы метаболизма и обмена веществ в организме. L-аргинин способствует превращению аммиака в мочевину, связывает токсичные ионы аммония, образующиеся при катаболизме белков в печени. L-яблочная кислота необходима для регенерации L-аргинина в этом процессе и в качестве энергетического источника для синтеза мочевины. Рибофлавин (В2) превращается во флавин-мононуклеотид и флавин-аденин-динуклеотид. Оба метаболита фармакологически активны и в составе коферментов играют важную роль в окислительно-восстановительных реакциях. Никотинамид переходит в депо в форме пиридин нуклеотида, который играет важную роль в окислительных процессах организма. Совместно с лактофлавином никотинамид участвует в промежуточных процессах метаболизма, в форме трифосфопиридина нуклеотида - в синтезе белка. Снижает уровень сывороточных липопротеинов очень низкой плотности и низкой плотности и в тоже время повышает уровень липопротеинов высокой плотности, поэтому используется в терапии гиперлипидемий. D-пантенол, как кофермент А, являясь основой промежуточных процессов метаболизма, участвует в метаболизме углеводов, глюконеогенезе, катаболизме жирных кислот, в синтезе стерола, стероидных гормонов и порфирина. Пиридоксин (В6) является составной частью групп многих ферментов и коферментов, играет значительную роль в процессах метаболизма углеводов и жиров, необходим для образования порфирина, а также синтеза Hb и миоглобина. Терапия устанавливается индивидуально, с учетом исходной концентрации аммиака в крови и назначается в зависимости от динамики состояния больного. Обычно назначают в/в капельное введение 500 мл раствора со скоростью 40 кап./мин. Введение препарата может повторяться каждые 12 ч и до 1,5 л в сутки.

Аргинин содержится в гепатопротекторных препаратах Сарженор и Цитраргин .

Цитрат бетаина Бофур - в его состав входит бетаин и цитрат (анион лимонной кислоты). Бетаин - аминокислота, производное глицина с метилированной аминогруппой, присутствующая в печени и почках человека, основной липотропный фактор. Способствует профилактике жирового перерождения печени и снижает уровень холестерина в крови, увеличивает дыхательные процессы в пораженной клетке. Цитрат представляет собой важное звено в цикле трикарбоновых кислот (цикл Кребса). Выпускается в гранулах по 250 г для приема внутрь.

К индукторам микросомальных ферментов печени относятся также флумецинол (зиксорин) и производное барбитуровой кислоты фенобарбитал, обладающий противосудорожным и снотворным действием.

Препараты животного происхождения

Гепатамин , комплекс белков и нуклеопротеидов, выделенных из печени крупного рогатого скота; Сирепар - гидролизат экстракта печени; Гепатосан - препарат, получаемый из печени свиньи.

Препараты животного происхождения, содержат комплекс белков, нуклеотидов и других активных веществ, выделенных из печени крупного рогатого скота. Они нормализуют метаболизм в гепатоцитах, повышают ферментативную активность. Обладают липотропным эффектом, способствуют регенерации паренхиматозной ткани печени и оказывают детоксикационное действие.
Растительное сырье для улучшения функции печени и пищеварения

Лив-52 , содержащий соки и отвары многих растений, обладает гепатотропным действием, способствует улучшению функции печени, аппетита и отхождению газов из кишечника.

Тыквеол содержит жирное масло, полученное из семян тыквы обыкновенной, в состав которого входят каротиноиды, токоферолы, фосфолипиды, флавоноиды; витамины: В1, В2,С, Р, РР; жирные кислоты: насыщенные, ненасыщенные и полинасыщенные - пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая, арахидоновая и др. Препарат оказывает гепатопротекторное, антиатеросклеротическое, антисептическое, желчегонное действие. Выпускается во флаконах по 100 мл и в пластиковых флаконах-капельницах по 20 мл. Применяют по 1 ч. ложке за 30 мин. до еды 3-4 раза в день, курс лечения 1-3 месяца.

Бонджигар выпускается в сиропе и твердых желатиновых капсулах, содержит смесь растительных компонентов, обладающих противовоспалительным, гепатопротекторным, мембраностабилизирующим, детоксицирующим и липотропным действием. Предотвращает поражение и нормализует функции печени, защищает ее от действия повреждающих факторов и накопления токсических продуктов метаболизма. Применяют внутрь, после еды, по 2 столовые ложки сиропа или 1-2 капсулы 3 раза в день в течение 3 недель.

Гомеопатические препараты

Гепар композитум - комплексный препарат, содержащий фитокомпоненты: Lycopodium и Carduus marianus, суис-органные препараты печени, поджелудочной железы и желчного пузыря, катализаторы и серу, поддерживает метаболические функции печени.

Хепель - в состав этого препарата входит расторопша пятнистая, чистотел, плаун булавовидный, чемерица, фосфор, колоцинт и др. Антигомотоксический препарат обладает антиоксидантной активностью, защищает гепатоциты от повреждения свободных радикалов, а также антипролиферативным и гепатопротекторным действием. Выпускается в таблетках, применяют под язык по 1 таблетке 3 раза в день.

Комплексный гомеопатический препарат Галстена применяется в комплексном лечении острых и хронических заболеваний печени, заболеваний желчного пузыря (хронический холецистит, постхолецистэктомический синдром) и хронического панкреатита. Выпускается во флаконах по 20 мл. Назначают детям до 1 года по 1 капле, до 12 лет - 5 капель, взрослым - 10 капель. В острых случаях возможен прием каждые полчаса-час до наступления улучшения состояния, но не более 8 раз, после чего принимать 3 раза в день.

Биологически активные добавки к пище (БАД)

Овесол - комплексный препарат, содержащий вытяжку овса молочной спелости в сочетании с желчегонными травами и маслом куркумы. Выпускается в виде капель по 50 мл и таблеток по 0,25 г. Ежедневный прием препарата по 1 таблетке 2 раза во время еды в течение месяца улучшает дренажные функции желчевыводящих путей, устраняет застой и нормализует биохимический состав желчи, препятствует образованию желчных камней. БАД бережно очищает печень от шлаков и токсичных продуктов эндогенного и экзогенного происхождения, улучшает метаболическую функцию печени, способствует вымыванию песка.

Гепатрин - в его составе три главных компонента: экстракт расторопши, экстракт артишока и эссенциальные фосфолипиды. БАД применяется с профилактической целью, для защиты клеток печени от повреждения при применении лекарств, алкоголя, от неблагоприятного воздействия эндо-, экзотоксинов и употребления чрезмерно жирной пищи. Выпускается в капсулах по 30 штук.

Эссенциал ойл - высококачественный рыбий жир, полученный из гренландского лосося методом холодной обработки и стабилизированный от окисления витамином Е. В одной капсуле содержатся: ненасыщенные жирные кислоты (омега-3): 180 мг эйкзапентаеновой кислоты, 120 мг докозагексаеновой к-ты и 1мг D-альфа-токоферола. В качестве БАД употреблять взрослым по 1-3 капсуле в день во время еды. Курс приема 1 месяц.

Гепавит Лайф формула содержит комплекс витаминов группы В и жирорастворимые витамины А, Е, К, фосфолипидный комплекс, активирующий функции печени, активные компоненты растительного сырья, обладающие антиоксидантным, желчегонным, детоксикационным действием. Выпускается в капсулах (таблетках), применяют по 1 капс. (табл.) 1-2 раза в сутки.

Тыквэйнол - БАД , изготовленная на основе пищевых масел морского и растительного происхождения - эйконола и тыквеола, полученных по отечественным технологиям с использованием щадящих режимов переработки сырья. Тыквэйнол содержит комплекс биологически активных веществ: насыщенные и полиненасыщенные жирные кислоты - эйкозапентаеновую, докозагексаеновую, линоленовую, линолевую, пальмитиновую, стеариновую, арахидоновую и др., каротиноиды, токоферолы, фосфолипиды, стерины, фосфатиды, флавоноиды, витамины А, D, Е, F, В1, В2, С, Р, РР. Благодаря сочетанию активных соединений морского и растительного происхождения способствует очищению организма от жировых и известковых отложений, улучшению кровообращения, повышению эластичности кровеносных сосудов, укреплению сердечной мышцы, предупреждению инфаркта миокарда, улучшению зрения, исчезает шум в голове, а также оказывает гепатопротекторное, желчегонное, противоязвенное, антисептическое действие; тормозит чрезмерное развитие клеток предстательной железы; способствует снижению воспалительных процессов и ускорению регенерации тканей при заболеваниях слизистой желудочно-кишечного тракта, слизистой полости рта, желчевыводящих путей, мочеполовой системы и кожи. При приеме БАД улучшается состав желчи, нормализуется нарушенное функциональное состояние желчного пузыря, снижается риск возникновения желчекаменной болезни и холецистита. Нормализует секреторную и моторноэвакуаторную функции желудка и улучшает обмен веществ. При лечебном приеме необходимо уменьшить содержание растительного масла в суточном рационе на 10 г. С профилактической целью Тыквэйнол рекомендуется употреблять курсами по 2 г в день в течение не менее 1 месяца два раза в год, в осенне-зимний и весенний периоды года. Особенно необходим Тыквэйнол людям, подверженным умственным и физическим перегрузкам, студентам и школьникам для повышения обучаемости и толерантности к нагрузкам. В дозе по 1 г в день Тыквэйнол полезен всем здоровым людям для профилактики.

Ливер Райт содержит экстракта печени 300 мг, холина битартрат 80 мг, экстракта расторопши 50 мг, инозитола 20 мг; цистеина 15 мг; витамина В12 6 мкг. Предупреждает гепатотоксическое действие ацетальдегида, продукта метаболизма алкоголя, восстанавливает клеточные эндоплазматические мембраны, состоящие из фосфоглицеридов, синтезируемых на основе инозитола и холина, снижает уровень молочной кислоты в крови за счет улучшения метаболизма при участии цистеина, способствует накоплению глютатиона в результате действия цистеина, что предупреждает перекисное окисление липидов, улучшает мик