Отличительная характеристика плотной волокнистой соединительной ткани :

· очень высокое содержание волокон, формирующих толстые пучки, которые занимают основную часть объема ткани;

· малое количество основного вещества;

· преобладание фиброцитов.

· главное свойство – высокая механическая прочность.

Неоформленная плотная соединительная ткань – для этого вида ткани характерно неупорядоченное расположение коллагеновых пучков, образующих трехмерную сеть. В промежутках между пучками волокон содержится основное аморфное вещество, которое объединяет ткань в единый остов, клетки - фиброциты (главным образом) и фибробласты, кровеносные сосуды, нервные элементы. Неоформленная плотная соединительная ткань образует сетчатый слой дермы и капсулы различных органов. Выполняет механическую и защитную функцию.

Оформленная плотная соединительная ткань отличается тем, что коллагеновые пучки в ней лежат параллельно друг другу (в направлении действия нагрузки). Образует сухожилия, связки, фасции и апоневрозы (в виде пластин). Между волокнами находятся фибробласты и фиброциты. Кроме коллагеновых, существуют эластические связки (голосовые, желтые, соединяющие позвонки), образованные пучками эластических волокон.

ВОСПАЛЕНИЕ

Воспаление - защитно-приспособительная реакция на местное повреждение, выработанная в ходе эволюции. Факторы, вызывающие воспаление, могут быть экзогенными (инфекция, травма, ожог, гипоксия) или эндогенными (очаг некроза, отложение солей). Биологический смысл этой защитной реакции - ликвидация или ограничение от здоровой ткани очага повреждения, и регенерация ткани. Хотя это и защитная реакция, но в некоторых случаях проявления этой реакции, особенно хронического воспаления, способны вызвать тяжелые повреждения тканей.

Фазы воспаления:

I. фаза альтерации – повреждение тканей и выделение медиаторов воспаления , комплекса биоактивных веществ, отвечающих за возникновение и поддержание воспалительных явлений.

Медиаторы воспаления:

гуморальные (из плазмы крови) – кинины, факторы свертывания и т.д.;

клеточные медиаторы выделяются клетками в ответ на повреждение; вырабатываются моноцитами, макрофагами, тучными клетками, гранулоцитами, лимфоцитами, тромбоцитами. Эти медиаторы: биоамины (гистамин, серотонин), эйкозаноиды (производные арахидо новой кислоты: простагландины, лейкотрие ны), и другие.

II. фаза экссудации включает:

· изменения микроциркуля торного русла: спазм артериол, затем расширение артериол, капилляр и венул – возникает гипереми я – покраснение и повышение температуры.

· формирование жидкого (бесклеточного) экссудата – благодаря повышению проницаемости сосудов, изменения осмотического давления в очаге воспаления (из-за повреждения) и гидростатического в сосудах. Нарушение оттокаприводит квозникновению отёка.

· формирование клеточного экссудата (миграция лейкоцитов через эндотелий).

Клеточный состав фаз воспаления:

1 фаза : на начальных этапах наиболее активно выселяются нейтрофильныегранулоциты , которые выполняют фагоцитарную и микробицидную функции; в результате их активности образуются продукты распада, которые привлекают в очаг воспаления моноциты, выселяющие из крови;

2 фаза : моноциты в соединительной ткани превращаются в макрофаги. Макрофаги фагоцитируют погибшие нейтрофилы, клеточный детрит, микроорганизмы и могут инициировать иммунный ответ.

В очаге хронического воспаления преобладают микрофаги и лимфоциты, которые образуют скопления – гранулёмы. Сливаясь, макрофаги образуют гигантские многоядерные клетки.

III. фаза пролиферации (репарации ) – Макрофаги, лимфоциты и другие клетки вызывают: хемотаксис, пролиферацию и стимуляцию синтетической активности фибробластов ; активацию образования и роста сосудов. Образуется молодая грануляционная ткань, откладывается коллаген, формируется рубец.

СОЕДИНИТЕЛЬНЫЕ ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

ЖИРОВАЯ ТКАНЬ

Жировая ткань представляет собой особую разновидность соединительной ткани, в которой основной объём занимают жировые клетки – адипоциты. Жировая ткань повсеместно распространена в организме, составляя 15-20% массы тела у мужчин и 20-25% - у женщин (т.е. 10-20 кг у здорового человека). При ожирении (а в развитых странах это около 50% взрослого населения) масса жировой ткани увеличивается до 40-100 кг. Аномалии содержания и распределения жировой ткани связаны с рядом генетических нарушений и эндокринных расстройств.

У млекопитающих, включая человека, имеются два вида жировой ткани – белая и бурая , которые различаются по цвету, распределению в организме, метаболической активности, строению образующих их клеток (адипоцитов) и степени кровоснабжения.

Белая жировая ткань – преобладающий вид жировой ткани. Образует поверхностные (гиподерма – слой подкожной жировой клетчатки) и глубокие – висцеральные – скопления, образует мягкие упругие прослойки между внутренними органами.

В эмбриогенезе жировая ткань развивается из мезенхимы . Предшественники адипоцитов – малодифференцированные фибробласты (липобласты), лежащие по ходу мелких кровеносных сосудов. В ходе дифференцировки в цитоплазме образуются сначала мелкие липидные капли, капли сливаются друг с другом, образуя одну крупную каплю (95-98% объёма клетки), а цитоплазма и ядро смещаются к периферии. Такие жировые клетки называются однокапельными адипоцитами . Клетки утрачивают отростки, приобретают сферическую форму, в ходе развития их размер увеличивается в 7-10 раз (до 120 мкм в диаметре). Цитоплазма характеризуется развитой агранулярной ЭПС, мелким комплексом Гольджи, небольшим количеством митохондрий.

Белая жировая ткань состоит из долек (компактных скоплений адипоцитов), разделенных тонкими прослойками рыхлой волокнистой соединительной ткани, несущими кровеносные и лимфатические сосуды и нервы. В дольках клетки приобретают форму многогранников.

Функции белой жировой ткани :

· энергетическая (трофическая ): адипоциты обладают высокой метаболической активностью: липогенез (отложение жиров) - липолиз (мобилизация жиров) – обеспечение организма резервными источниками;

· опорная, защитная, пластическая – полностью или частично окружает различные органы (почки, глазное яблоко и.т.д.). Резкое похудание может привести к смещению почек;

· теплоизолирующая;

· регуляторная – в процессе миелоидного кроветворения адипоциты входят в состав стромального компонента красного мозга, создающего микроокружение для пролиферирующих и дифференцирующихся клеток крови;



· депонирующая (витамины, стероидные гормоны, вода)

· эндокринная – синтезирует эстрогены (главный источник у мужчин и

пожилых женщин) и гормон, регулирующий потребление пищи – лептин. Лептин тормозит секрецию гипоталамусом особого нейропептида NPY, который усиливает потребление пищи. При голодании секреция лептина снижается, при насыщении – возрастает. Недостаточная выработка лептина (или отсутствие рецепторов к лептину в гипоталамусе) ведёт к ожирению.

Ожирение

В 80% увеличение массы жировой ткани происходит вследствие нарастания объёма (гипертрофии) адипоцитов. В 20% (при наиболее тяжелых формах ожирения, развивающихся в молодом возрасте) – увеличение числа адипоцитов (гиперплазия): число адипоцитов может увеличиться в 3-4 раза.

Голодание

Снижение массы тела в результате лечебного или вынужденного голодания сопровождается падением массы жировой ткани – усиление липолиза и угнетение липогенеза – резкое уменьшение объемов адипоцитов при сохранении их общего числа. При возобновлении нормального питания клетки быстро накапливают липиды, клетки увеличиваются в размерах, и превращаются в типичные адипоциты, в результате чего происходит быстрое восстановление массы тела после отмены диеты. Жировая ткань на ладонях, подошвах и в ретроорбитальных участках очень устойчива к процессам липолиза. Снижение массы жировой ткани более чем на треть от нормы, вызывает дисфункцию системы гипоталамус-гипофиз-яичники – подавление менструального цикла и бесплодие. Нервная анорексия - один из видов пищевых расстройств, при котором запас жировой ткани снижается до 3 % нормального уровня массы жировой ткани, нередко заканчивается смертельным исходом.

Бурая жировая ткань

У взрослого человека бурая жировая ткань присутствует в небольшом количестве, лишь в нескольких, чётко очерченных участках (между лопаток, на задней поверхности шеи, в воротах почек). У новорожденных она составляет до 5% массы тела. Её содержание мало меняется при недостаточном или избыточном питании. Бурая жировая ткань наиболее сильно развита у животных, впадающих в зимнюю спячку.

характеризуются высоким содержанием межклеточного вещества, состоящего из волокон и основного аморфного вещества, заполняющего пространства между волокнами.

Классификация основана на соотношении клеток и межклеточного вещества, а также степени упорядоченности волокнистого компонента.

1. Рыхлая волокнистая соединительная ткань (РВСТ) характеризуется:

а) сравнительно невысоким содержанием волокон в межклеточном веществе;

б) относительно большим объемом основного аморфного вещества;

в) многочисленным и разнообразным клеточным составом.

2. Плотная волокнистая соединительная ткань характеризуется:

а) преобладанием в межклеточном веществе волокон;

б) незначительным объемом основного аморфного вещества;

в) малочисленным и однообразным клеточным составом.

Типы плотной соединительной ткани :

а) оформленная (все волокна ориентированы в одном направлении – образуют параллельные пучки, как в сухожилиях, или переплетаются в одной плоскости, как в апоневрозах);

б) неоформленная (волокна ориентированы случайным образом).

РЫХЛАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (РВСТ) – самый распространенный вид соединительной ткани (входит в состав слизистых и серозных оболочек, кожи, образует строму органов, прослойки, заполняет пространства между функциональными элементами в других тканях, сопровождает кровеносные сосуды и нервы. «Связывает», «соединяет» между собой ткани.

Клетки РВСТ– сложная гетерогенная популяция клеток, взаимодействующих между собой :

1. ФИБРОБЛАСТЫ – наиболее распространенные, функционально ведущие клетки .

Происхождение: Стволовая Клетка линии механоцитов (особая стволовая клетка мезенхимной природы). Самоподдерживающаяся популяция, редко делится, устойчива к повреждающим факторам. Морфологически – по-видимому, соответствует адвентициальным клеткам – мелкая веретеновидная клетка с тёмным ядром. базофильной цитоплазмой и слабо развитыми органеллами.

Функции :

1) продукция всех компонентов межклеточного вещества (гликозаминогликаны, коллаген, эластин, фибронектин, ламинин и другие белки и гликопротеины);

2) поддержание структурной организации межклеточного вещества

(баланс выработки и разрушения - коллагеназа);

3) регуляция деятельности других клеток соединительной ткани и влияние на другие ткани (выделяют гуморальные факторы, влияющие на рост, дифференцировку, функциональную активность макрофагов, лимфоцитов, гладкомышечных клеток, эпителия – цитокины : колониестимулирующий фактор гранулоцитов и макрофагов, интерлейкины-3 и -7).

Дифферон: СК→ПСК→ малодифференцированный (юный) фибробласт → дифференцированный (зрелый) фибробласт → фиброцит.



Малодифференцированный фибробласт – базофильная цитоплазма, с небольшим количеством отростков, умеренно развитый синтетический аппарат (в основном – свободные рибосомы); способность. к пролиферации и миграции, что важно в репаративных процессах.

Зрелый фибробласт – наиболее многочисленный тип, крупная клетка (40-50 мкм в поперечнике), имеет отростки, с нерезкими клеточными границами; светлое овальное ядро; ядрышки; слабо базофильная цитоплазмой. Периферическая часть цитоплазмы - эктоплазма - более светлая (в основном, элементы цитоскелета). Мощный синтетический аппарат: синтез (гликозамингликаны, коллаген, гликопротеины, актин) и выделение. Подвижные, способны изменять форму, прикрепляться к другим клеткам и волокнам.

Фиброцит – конечная форма, малоактивная, долгоживущая, не способна к пролиферации. Узкая, веретенообразная форма, с тонкими отростками. Ядро плотное. Синтетический аппарат развит слабо, много лизосом. Функция – регуляция метаболизма и поддержание стабильности межклеточного вещества.

Фиброкласты – клетки, специализирующиеся на разрушении межклеточного вещества. Обеспечивают перестройку ткани. Многочисленны в молодой соединительной ткани (грануляционной) и рубцах. Характерны цитоплазматические вакуоли с коллагеновыми фибриллами на разных стадиях лизиса. Расщепление вне- и внутриклеточное.

Миофибробласты – более половины их цитоплазмы занимают элементы сократительного аппарата (актиновые микрофиламенты). Активно участвуют в репаративных процессах. Контракция раны: сокращаясь, они стягивают края раны и образуют коллаген (III типа), который заполняет поврежденный участок (в грануляционной ткани в условиях раневого процесса).

2. МАКРОФАГИ (гистиоциты) – вторые по численности, потомки Стволовой Клетки Крови, образуются из моноцитов; особенно многочисленны в собственной пластинке слизистых и серозных оболочек; покоящиеся макрофаги– малоактивные; блуждающие – с высокой функциональной активностью.

Функции:

1. Фагоцитоз - распознавание, захват и переваривание поврежденных, зараженных, опухолевых и погибших клеток, компонентов межклеточного вещества, экзогенных микроорганизмов и субстанции (на поверхности имеются рецепторы для иммуноглобулинов, антигенов опухолевых клеток);

а) неспецифический фагоцитоз характерен для лёгочных макрофагов, захватывающих частицы пыли, сажи и т д.

б) специфический фагоцитоз – сначала иммуноглобулины и белки комплемента плазмы крови (объединенные названием опсонины) окружают (опсонизируют) бактерию. Макрофаг имеет рецепторы к опсонинам и легко захватывает опсонизированные бактерии и образует фагосомы. Лизосомы содержат лизоцим, разрушающий бактериальную стенку, и гидролитические ферменты. Могут и секретировать содержимое лизосом за пределы клеток в инфицированных зонах.

2.Индукция иммунных реакций – играют роль антиген-представляющих клеток; осуществляют обработку (процессинг) антигенов: последовательность из 8-11 аминокислот - эпитопы антигенов - вместе с молекулами главного комплекса гистосовместимости выделяются на поверхность клетки – только после этого лимфоциты могут узнать антиген («генетически чужое»).

3. Регуляция деятельности других типов клеток (фибробластов, лимфоцитов, тучных кл. и др.) путём секреции биоактивных факторов (монокины): интерлейкин-1, фактор хемотаксиса нейтрофилов, эндогенные пирогены (через центр терморегуляции вызывают повышение температуры); фактор некроза опухолей (цитотоксическое действие на трансформированные клетки)).

Морфология: Активные обладают высокой подвижностью, изменчивой, обычно отростчатой формой (микровыросты, псевдоподии) с неровными, но чёткими краями. Ядра темнее, чем у фибробластов, характерны инвагинации. Цитоплазма: многочисленные лизосомы и крупные фаголизосомы, пиноцитозные пузырьки, развитые элементы цитоскелета. Остальные органеллы развиты умеренно.

В очаге повреждения могут превращаться в особые виды – гигантские многоядерные клетки и эпителиоидные клетки.

3. ТУЧНЫЕ КЛЕТКИ (лаброциты, тканевые базофилы ) – 10%.

По-видимому, потомки СКК (стволовой клетки крови). Сравнительно большая продолжительность жизни в отличие от базофилов крови.

Функции :

1. регуляторная - гомеостаз (путём медленного выделения малых доз биоактивных веществ которые влияют на проницаемость и тонус сосудов и подержание баланса жидкости в тканях);

2. защитная – важная роль в развитии реакции воспаления (быстрое, локальное выделение медиаторов воспаления и хемотаксических факторов, которые привлекают нейтрофилы и эозинофилы.

3.участие в аллергических реакциях : тучные клетки имеют рецепторы к иммуноглобулинам класса Е (IgE – образуются в ответ на проникновение некоторых антигенов-аллергенов) на плазмолемме. →. Выделение биоактивных веществ из гранул и синтез ряда новых веществ (простагландины, тромбоксан и т.д). Привлекают эффекторные клетки, участвующие в так называемых реакциях поздней фазы (длительной иммунной стимуляции, которая развивается через несколько часов после контакта с аллергеном).

Локализация :

Периваскулярная (мелкие сосуды); очень много в дерме; в собственной пластинке слизистой пищеварительного, дыхательного, выделительного трактов, строма тимуса. Локальное нарастание в строме при функциональной активности (щитовидная железа, молочная железа, матка), вблизи очагов воспаления. Возможно, способны к делению (крайне редко).

Морфология :

Удлиненной или округлой формы с неровной поверхностью, тонкие отростки и выросты. (20-30 мкм - в 1.5 – 2 раза крупнее базофилов крови). Ядра небольшие, округлые, несегментированные, гетерохроматин; на световом уровне - замаскированы гранулами. Цитоплазма – умеренно развитие органелл, липидные капли и гранулы . Наиболее характерны – гранулы.

Гранулы – сходны, но не идентичны гранулам базофилов крови. Метахромазия (окрашиваются не в цвет красителя)., многочисленные, крупные, различаются по величине, плотности, составу; у человека иногда содержат слоистые включения, похожие на завиток («скроллы»). Состав гранул :

гепарин (30% содержимого – мощный антикоагулянт, противовоспалительное действие);

гистамин (10% - антагонист гепарина, важнейший медиатор воспаления и немедленных аллергических реакций (вызывает отёк при аллергическом рините, некоторых формах астмы, анафилактический шок);

дофамин , факторы хемотаксиса эозинофилов и нейтрофилов , гиалуроновая кислота, гликопротеины, фосфолипиды, энзимы (протеазы, кислые гидролазы).

Выход биогенных аминов приводит к изменению состояния межклеточного вещества и проницаемости гематотканевого барьера (важная роль на первых этапах воспаления).

При анафилактической дегрануляции [анафилакси я – аллергическая реакция немедленного типа, вызванная повторным введением аллергена; характеризуется резким сокращением (спазмом) гладких мышц (бронхиол) и расширением капилляров] гранулы сливаются в цепочки – внутрицитоплазматический канал (сложный экзоцитоз), массированное выделение. → быстрое сосудорасширяющее действие на капилляры и венулы, повышает их проницаемость и выход плазмы в ткани, спазм гладких мышц бронхиол, острый ринит, отеки, зуд, понос, падение кровяного давления.

Вещества, угнетающие дегрануляцию тучных клеток, с различными механизмами фармакологического действия (антигистаминовые препараты) широко распространены в качестве профилактики и лечения.

4. ЖИРОВЫЕ КЛ. (адипоциты )

Образуются из юных фибробластов путем накопления в цитоплазме мелких липидных капель, которые сливаются в одну крупную (однокапельные адипоциты ). Встречаются повсеместно, в виде скоплений (дольки) или по отдельности, вдоль сосудов. Крупные клетки, сферической формы, с уплощенным ядром и тонким ободком цитоплазмы с органеллами по периферии (перстневидные клетки). Высокая метаболическая активность: обмен липидов, депо жирорастворимых витаминов и стероидных гормонов; регуляторная функция (вырабатывают гормон лептин, регулирующий потребление пищи, и эстрогены).

Плотные соединительные ткани содержат меньше основного вещества, а в межклеточном веществе преобладают волокнистые структуры. В них мало клеток и менее разнообразный клеточный состав. Волокна преимущественно коллагеновые, плотно располагаются друг к другу. В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки, между волокнами имеются фибробласты, но преобладают фиброциты. Пучки коллагеновых волокон переплетаются между собой, а между пучками лежат тонкие прослойки рыхлой соединительной ткани с капиллярами. Эта ткань образует сетчатый слой кожи. Способность регенерации ниже, чем в рыхлой.

Плотная оформленная соединительная ткань.

Плотная оформленная соединительная ткань образует фиброзные мембраны, связки и сухожилия, при этом все волокна идут паралельно и плотно. Сухожилия содержат коллагеновые волокна. Каждое отдельное волокно составляет пучок первого порядка, между ними находятся фиброциты. Эти волокна образуют пучок второго порядка. Между пучками второго порядка находятся прослойки соединительной ткани с кровеностными капилярами, которые образуют эндотеноний. Пучки второго порядкаобъединяются в пучки третьего порядка,которые отделяются друг от друга крупной прослойкой соединительной ткани - перитенонием. Способностя к регенерации - низкая.

Соединительная ткань со специальными свойствами.

1. Ретикулярная ткань. Содержит ретикулярные клетки, которые своими отростками соединяются и образуют сеть. Вдоль отростков, углубляясь в цитолемму, идут ретикулярные волокна. Ретикулярная ткань образует строму кровеностных органов и очень хорошо регенерирует.

2. Жировая ткань. У взрослых - белый жир. Представлен скоплением жировых клеток, которые образуют дольки. Они отделены опрослойкой соединительной ткани, которая содержит кровеностные капилляры. Они наполненны нейтральным жиром. Он легко усваевается, но трудно отдается. Жировая ткань образует подкожную жировую клетчатку, жировые капсулы вокруг органов. Эта ткань является источником воды, энергии, пластического материала. Бурый жир встречается в эмбриогенезе и у новорожденных. Он более энергоемкий.

3. Пигментная ткань - скопление пигментных клеток.

4. Слизистая ткань. В норме – только в эмбриогенезе и в пуповине. В ней мало клеток, мало коллагеновых волокон, хорошо выражено полужидкое основное вещество.

5. Скелетная ткань подразделяется на:

a) Хрящевые

b) Скелетные

Скелетная соединительная ткань.

Хрящевая ткань в основном выполняет трофическую функцию. В ней снижено содержание воды до 70-80%, повышено содержание минеральных солей до 4-7% и органических веществ до 10-15%. Эти ткани более плотные и упругие, все содержат клетки и межклеточное вещество. Клетки хрящевых тканей одинаковы и называются – хондробласты. Они имеют веретеновидную или овальную форму с базофильной цитоплазмой, развитым белоксинтезирующим аппаратом, часть из них являются стволовыми и способны пролеферировать. Хондробласты вырабатывают межклеточное вещество и дифференцируются в молодые хондроциты. Это клетки небольшой овальной формы с развитым белоксинтезирующим аппаратом, сохраняют способность к пролиферации и вырабатывают межклеточное вещество, со временем превращаются в зрелые хондроциты. Они более крупные, со временем утрачивают способность к пролиферации. Все эти клетки располагаются в полостях, которые по объему соответствуют их размеру. Полость ограничена капсулой, состоящей из коллагеновых волокон. В ней могут накапливается несколько хондроцитов, то образуются изогенные группы клеток.



Хрящевые ткани отличаются друг от друга строением межклеточного вещества, прежде всего строением межклеточных волокон, способных к обызвествлению. Различают гиалиновую, эластическую и волокнистую хрящевую ткань.

Гиалиновый хрящ наиболее распространен (сочленение ребер с грудиной, в стенке воздухоносных путей, при образовании суставных поверхностей). Снаружи покрыта надхрящницей (перихондрием). Наружный слой образован более плотной волокнистой соединительной тканью, внутренний более рыхлой. Внутренняя оболочка содержит фибробласты и хондробласты. В оболочке располагаются кровеносные сосуды. Хондробласты пролиферируют и вырабатывают межклеточное вещество, выделяют его вокруг себя и замуровываются. За счет этого идет рост хряща снаружи – аппозиционный. Глубже располагается собственное вещество хряща. В его периферической части находятся молодые хондроциты. Они также делятся, вырабатывают и выделяют межклеточное вещество и определяют рост хряща изнутри – интерстициальный рост. В средней части вещества хряща находятся зрелые хондроциты, а в центре располагаются изогенные группы хондроцитов. Между клетками находится межклеточное вещество, содержащее коллагеновые волокна и основное вещество. У них одинаков показатель преломления, поэтому они трудно различимы. В растущем организме межклеточное вещество оксифильное, с возрастом оно по мере накопления гликозаминогликонов становится базофильным. Кровеносных сосудов в хряще нет, питание происходит диффузно. По мере старения происходит отложение солей кальция, идет обызвествление, хрящ становится хрупким и ломким.

Эластический хрящ входит в состав стенки воздухоносных путей, образует основу ушной раковины. Имеет сходное строение, но имеется ряд особенностей. В межклеточном веществе располагаются эластические волокна, межклеточное вещество оксифильно все время, в норме не обызвествляется.

Волокнистый хрящ встречается в зоне соединения сухожилия и кости, в межпозвоночных дисках. С одной стороны хрящ образован плотной оформленной соединительной тканью, а с другой – гиалиновым хрящом. С возрастом волокнистый хрящ обызвествляется. Хрящевые ткани все время регенерируют.

Костные ткани обладают высокой степенью минерализации (содержание фосфата кальция – 70%), твердые, прочные и формируют костный. В очень низкое содержание воды, из органических веществ резко преобладают белки. Различают:

1. Грубоволокнистую (ретикулофиброзную) скелетную ткань. Она присутствует в эмбриогенезе, а у взрослых образует швы, и соединения костей черепа.

2. Пластинчатую костную ткань.

Костные ткани содержат клетки, вырабатывающие межклеточное вещество, в которых резко преобладают коллагеновые волокна. Небольшой объем занимает основное (склеивающие) вещество. Его клеточный состав одинаков, представлен остеобластами – клетки образующие костную ткань. Это крупные, округлой формы клетки с круглым ядром, с хорошо развитым белоксинтезирующим аппаратом, вырабатывают межклеточное вещество (коллагеновые волокна). Количество этих клеток велико в растущем организме, при регенерации. Также к клеткам костной ткани относят остеоциты. Они имеют тонкое тело и длинные тонкие отростки, которые лежат в костных канальцах, анастамозируют с отростками других клеток и по костным канальцам транспортируют тканевую жидкость. Также имеются остеокласты – клетки, разрушающие костную ткань. Они развеваются из моноцитов крови и относятся к макрофагической системе. Это крупные, многоядерные клетки с хорошо развитым лизосомным аппаратом. На одной поверхности клетки имеются микроворсики. Лизосомальные ферменты выделяются в зону микроворсинок и расщепляют белковую матрицу, что приводит к высвобождению кальция и к вымыванию его из кости.

Костные ткани различаются строением межклеточного вещества. В грубоволокнистой костной ткани коллагеновые волокна формируют пучки, которые переплетаются между собой. Между волокнами располагаются остеоциты, но у взрослого человека тонких костей мало. В пластинчатой костной ткани коллагеновые волокна идут параллельно друг к другу, плотно склеены между собой и образуют костные пластинки. Прочность костной ткани обеспечивается тем, что пластинки идут под разным углом. Между пластинками находятся остеоциты. Их отростки пронизывают костные пластинки во всех участках.

Пластинчатая костная ткань образует компактную кость. Она содержит остеоны и губчатую часть, где остеоны отсутствуют.

Диафиз трубчатой кости построен из компактной костной ткани. Снаружи диафиз покрыт надкостницей (периостом), ее наружный слой состоит из более плотной волокнистой ткани, а внутренний слой из более рыхлой, содержит фибробласты, остеобласты. Часть коллагеновых волокон уходит в вещество кости, поэтому надкостница плотно связана с костью. В ней находится большое количесивр рецепторов и здесь же располагаются кровеносные сосуды.

Диафиз построен из пластинчатой костной ткани. Снаружи располагается слой крупных костных пластинок, которые идут концентрически по диаметру всей кости. Далее выделяют внутренний слой общих пластинок, а изнутри лежит эндоост, состоящий из рыхлой соединительной ткани, содержащий кровеносные сосуды. Между ними находится широкий средний остеогенный слой. Он содержит остеоны - структурно-функциональные единицы кости. Остеоны располагаются по оси диафиза и состоит из концентрических костных пластинок разного диаметра. Внутри каждого остеона располагатся канал остеона, в нем содержится кровеносный сосуд. Между остеонами располагаются остатки костных пластинок - это остатки остеонов. В норме у человека остеоны постепенно разрушаются, и образуются новые остеоны. Между костными пластинками всех слоев располагаются остеоциты, а их отростками пронизываются костные пластинки и создается разветленная сеть канальцев. Кровеносные сосуды надкостницы по прободающим каналам поступают в остеоны, идут по их каналам, анастомозируют между собой и доставляют питательные вещества в канал остеона. Оттуда по костным канальцам фосфаты кальция очень быстро распространяются во все участки кости. Сущесвует два механизма образования костей: прямой остеогенез - процесс образования плоских костей непосредственно из мезенхимы. Мезенхимные клетки пролеферируют и групперуясь образуют скелетогенные островки. Они превращаются в остеобласты, вырабатывают межклеточное вещество, замуровывают себя и превращаются в остеоциты. Таким способом формируются костные балки. На их поверхности вырабатываются отсеобласты, происходит кальцинация межклеточного вещества. Костные балки построены из грубоволокнистой костной ткани. Костные балки врастают в кровеносные сосуды. С помощью остеобластов разрушается грубоволокнистая костная ткань и по мере врастания кровеносных сосудов она замещается пластинчатой костной тканью спомощью остеобластов. Так развиваются пластинчатые кости.

Трубчатая кость развивается на месте гиалинового хряща. Это непрямой остеогенез. На втором месяце эмбриогенеза закладывается зачаток из гиалинового хряща. Это будущая кость небольшого размера. Снаружи она покрыта надхрящницей, затем в области диафиза между надхрящницей и веществом хряща из грубоволокнистой костной ткани образуется костная манжета. Она полностью окружает диафиз и нарушает питание хрящевой ткани диафеза. Часть хреща в диафизе разрушается, оставшеся участки хряща обызвествляются. Надхрящница превращается в надкостницу и из нее внутрь врастают кровенсные сосуды. Они пронизывают костную манжету, при этом ее грубоволокнистая костная ткань замещается пластинчатой, сосуды глубже врастают в зону хряща,при этом остеокласты разрушают хрящ, а остебласты вокруг остатков обызвествляют хрящ, образуя эндохондральную кость из пластинчатой костной ткани. Обызвестившийся хрящ полностью разрушается, эндохондральная кость разрастается, соединяется с перихондральной костью, остеокласты разрушают костную ткань в середине диафиза и образуют костномозговую полость. В ней из мезенхимных клеток закладывается красный костный мозг. Эпифиз представлен гиалиновым хрящом. Он позднее подвергается окостенению. А между эпифизом и диафизом располагается метоэпифизарная пластинка - зона роста (за счет нее кости растут в длинну). Здесь выделяют слой пузырчатых клеток, столбчатый слой и пограничный слой

(близок по строению к гиалиновуму хрящу). Это пластинка окостеневает в 18-20 лет. Костная ткань хорошо регенерирует. В начале в зоне повреждения за счет фиброцитов образуется рыхлая соединительная ткань, затем за счет остеобластов заменяется крупноволокнистой соединительной тканью, она заполняет дефект и образует костную мозоль. К концу второй недели крупноволокнистая содинительная тканьначинает заполняться пластинчатой соединительной тканью. На рост и регенерацую костей влияют физическая нагрузка, содержание белка, солей кальция, витаминов Д, С, А в пище, гормонов.

Волокнистые соединительные ткани - типичные представители группы соединительных тканей, для которых характерно высокое содержание продуцируемого клетками матрикса. В основу их классификации положено соотношение клеток и матрикса с учетом свойств и организации последнего. Выделяют две разновидности.

В плотной волокнистой соединительной ткани клеточные элементы малочисленны и однообразны: преобладает один тип клеток - фиброциты. В матриксе выявляется большое число волокон.

В рыхлой волокнистой соединительной ткани клеточные элементы многочисленны и разнообразны. Для нее характерно сравнительно небольшое содержание в матриксе волокон при относительно большом объеме основного межфибриллярного вещества.

Плотная волокнистая соединительная ткань

Суставная капсула - это специфически дифференцированное соединительнотканное образование. В ней принято различать наружную фиброзную оболочку (membrana fibrosa) и внутреннюю - синовиальную оболочку (membrana synovialis).

Для плотной волокнистой ткани в составе фиброзной оболочки капсулы характерны типичные для этого вида соединительной ткани клетки - фиброциты - дефинитивные формы среди клеток фибробластического ряда. Они локализуются в слабо развитом интерстициальном пространстве, имеют веретенообразную форму и небольшие крыловидные отростки. Слабое развитие органелл соответствует низкому уровню биосинтетической функции этих клеток. Другие клетки соединительной ткани в норме единичны.

Плотная волокнистая соединительная ткань обладает четко выраженной преимущественной ориентацией коллагеновых волокон, эластических сетей и клеток. Такая ткань обладает значительной растяжимостью соответственно вектору смещения структур органа и значительной прочностью на разрыв.

Суставная капсула формирует замкнутую суставную сумку вокруг сочленяющихся в суставе костей, обеспечивая последним благоприятную среду для перемещения относительно друг друга. Капсула обеспечивает герметичность заполненного синовией (СЖ) щелевидного пространства, именуемого суставной полостью. Фиброзная оболочка капсулы имеет непосредственную связь (анатомическую и функциональную) с суставными связками, что позволяет говорить о наличии единой сумочно-связочной системы у каждого синовиального сустава.

Согласно С.А. Ахмалетдинову, в отделах фиброзной оболочки капсулы коленного сустава по упруго-прочностным свойствам, способности к деформации, фиброархитектонике, составу основного вещества можно выделить три группы структур:

  • структуры, сочетающие большую прочность и упругость с относительно малой способностью к деформации (заднемедиальный отдел капсулы);
  • структуры с большими прочностными и упругими свойствами, а также способностью к значительной деформации - удлинению (капсула сустава ниже менисков);
  • структуры с относительно небольшими прочностными и упругими свойствами, но большими возможностями для деформации (передние и заднелатеральные отделы капсулы).

Биохимическая и биомеханическая характеристики фиброзных структур сустава

Фиброзная капсула сустава, подобно другим разновидностям плотной соединительной ткани, весьма богата коллагенами. Так, если пересчитать на коллаген концентрацию специфического показателя коллагеновых белков - гидроксипролина - в капсуле плечевого сустава человека, станет ясно, что коллагены составляют около 80 г/100 г сухой обезжиренной ткани. Близкие цифры содержания коллагена были получены ранее при исследовании капсулы нормального тазобедренного сустава человека.

Главный коллаген фиброзных разновидностей соединительной ткани в зрелом ее состоянии - коллаген I типа. Другой большой интерстициальный коллаген - коллаген III типа, свойственный главным образом соединительной ткани эмбрионов и растущих организмов, составляет в капсуле суставов взрослого человека лишь небольшую часть общего количества коллагенов.

Как правило, массивные коллагеновые волокна суставной капсулы, основу которых составляет коллаген I типа, являются гетеротипическими. В большинстве случаев они содержат также небольшое количество ковалентно связанных с макромолекулами коллагена I типа макромолекул «малого» фибриллярного коллагена Утипа. Коллаген V типа, кроме того, присутствует в стенках кровеносных сосудов капсулы, где он продуцируется гладкомышечными и эндотелиальными клетками.

Кроме того, коллаген I типа в этих волокнах сопровождается макромолекулами ассоциированных нефибриллярных коллагенов XII, XIV, XX типов, входящих в подсемейство так называемых FACIT-коллагенов. В отличие от коллагена IX типа, который ковалентно связан с фибриллами коллагена II типа, FACIT-коллагены фиброзных тканей присоединены к коллагену I типа нековалентными связями. Предполагают, что все FACIT-коллагены выполняют общие по отношению к разным «большим» коллагеновым волокнам функции, а именно функции связывающих «мостиков» между волокнами.

На основании исследований in vitro у коллагенов XII и XIV типов предполагается еще одна функция - повышение деформативности трехмерной сети больших коллагеновых волокон в экстрацеллюлярном матриксе. Повышенная деформативность волокон создает благоприятные условия для миграции фибробластов. С этим предположением согласуется факт усиления экспрессии клетками коллагена XII типа при приложении к сухожилию растягивающих усилий.

Коллагены играют центральную роль в формировании биомеханических свойств суставной капсулы, в частности прочности на разрыв. Особенно важен в этом отношении, как и во всех других разновидностях соединительной ткани, коллаген I типа. Прочность на разрыв неодинакова у капсул различных суставов. Например, капсула плечевого сустава человека значительно прочнее капсулы локтевого сустава, несмотря на примерно одинаковую концентрацию коллагенов в ткани и примерно одинаковую толщину коллагеновых волокон (по данным ТЭМ). Различия в прочности капсул более выражены в молодом возрасте, а по мере старения прочность на разрыв обеих капсул снижается, и различия уменьшаются. Считают, что одним из факторов, способствующих снижению прочности суставных капсул с возрастом, является их кальцификация.

В суставной капсуле присутствует эластин. В концентрации этого фибриллярного белка имеются половые различия: в капсуле тазобедренного сустава у молодых самок крыс концентрация эластина составляет в среднем 3,3 г/100 г, а у самцов того же возраста - 1,1 г/100 г высушенной обезжиренной ткани. Она повышалась при введении животным эстрогенов и понижалась при введении тестостерона.

То обстоятельство, что при одинаковом количественном содержании коллагена отмечаются различия в биомеханических свойствах суставных капсул, может рассматриваться как указание на возможное участие неколлагеновых компонентов ткани в формировании этих свойств - участие, хорошо известное в общей биомеханике соединительной ткани. Авторы не проводили количественный биомеханический анализ разных капсул. Можно также упомянуть, что капсула тазобедренного сустава человека содержит больше гексозаминсодержащих гликоконъюгатов и сравнительно много ДНК (1,5-2,2 г/100 г высушенной обезжиренной ткани), другими словами - относительно богата клетками. Нарушение биомеханических свойств капсулы, наблюдаемое при OA тазобедренного сустава, развивается на фоне снижения концентрации ДНК, что указывает на уменьшение клеточной популяции.

Все эти факты, а также найденное L. Videman увеличение содержания гликозаминогликанов в ткани капсулы при иммобилизации (в экспериментах на кроликах с иммобилизацией в состоянии разгибания коленного сустава) говорят о том, что оптимизация биомеханических свойств суставных капсул обусловлена взаимодействием коллагеновых структур ткани с другими ее компонентами.

Морфофункциональная специфика суставных связок

Связки - это соединительнотканные образования в виде тяжей или пластин, входящие в состав аппарата, укрепляющего сустав. По отношению к суставной капсуле различают три разновидности связок. Первая разновидность - это внекапсульные связки, которые расположены вне капсулы сустава, но очень часто вплетающиеся в нее. Вторая разновидность - это капсулъные связки, которые являются уплощениями суставной капсулы. И наконец, третьей разновидностью являются внутрикапсульные (внутрисуставные) связки, находящиеся в суставной полости и покрытые СО. Так, в коленном суставе анатомически различают 9 связок, среди которых - две внутрисуставные крестообразные связки, две коллатеральные (малоберцовая и большеберцовая) и др.

Вместе с тем для соединительной ткани связок характерны свои особенности.

Коллатеральная большеберцовая связка представляет плоский соединительнотканный тяж, в котором выявляются поверхностные и глубокие пучки коллагеновых волокон. Коллатеральная малоберцовая связка представляет собой соединительнотканный тяж овальной формы, в котором так же, как и в крестообразных связках, различают пучки коллагеновых волокон трех порядков. Обе коллатеральные связки в целом отличаются от крестообразных большим содержанием эластических волокон.

М.М. Галлямовым также показано, что СО, покрывающая крестообразные связки, имеет ряд особенностей, не присущих СО других зон суставной полости. Это прежде всего синовиальные карманы - обширные углубления, которые являются резервуарами СЖ и увеличивают общую поверхность СО в суставе. Внутрисвязочные кровеносные сосуды непосредственно сообщаются с кровеносным руслом покрывающей связки СО, которое представлено однослойной и двухслойной сетями капилляров. По данным М.М. Галлямова, на 1 мм 2 поверхности среза крестообразных связок коленного сустава человека приходится 9,9 ± 1, 1звеньев микроциркуляторного русла с суммарной площадью стенок 0,14 ±0,01 мм 2 , в то время как на ту же площадь в СО приходится 66,0 ±6,7 сосудов с суммарной площадью стенок 0,97 ±0,1 мм 2 .

Некоторые биохимические характеристики суставных связок

В связках наряду с характерным для них и сухожилий коллагеном I типа отмечается представительство второго из «больших» интерстициальных коллагенов - коллагена III типа (до 12% общего количества), а также минорных FACIT-коллагенов.

Центральным формообразующим фактором, определяющим количественное накопление и структурную организацию коллагенов в связках и сухожилиях, являются механические нагрузки. Действие этого фактора начинается сразу же после рождения, одновременно с началом движений. В экспериментах на крысах установлено, что абсолютное содержание коллагена, определяемое по гидроксипролину, в медиальной коллатеральной связке коленного сустава увеличивается вследствие тренировки на тредбане; это абсолютное увеличение (концентрация гидроксипролина остается неизмененной) отражает утолщение связки. При снятии естественных механических нагрузок, которое достигалось в опытах на кроликах иммобилизацией коленного сустава, в этой же медиальной коллатеральной связке масса коллагенов уменьшалась, что было обусловлено ускоренным распадом коллагенов, которое лишь частично компенсировалось усиленным в восстановительном периоде биосинтезом.

Количественное содержание коллагенов в сухожилиях и связках увеличивается с возрастом. Общая концентрация коллагенов в пяточном (ахилловом) сухожилии кролика составляет при рождении 37 г/100 г, а у старых животных (в возрасте 4 лет) - 85 г/100 г высушенной обезжиренной ткани. Эта динамика согласуется с тем фактом, что фиброциты фиброзного аппарата сустава сохраняют способность экспрессировать макромолекулы матрикса. Эта способность в большей степени выражена у клеток тех отделов сухожилий и связок, которые подвержены большей механической нагрузке. Механическая нагрузка способствует совершенствованию структурной организации коллагеновых фибрилл.

Коллаген I типа является главным фактором, обеспечивающим прочность сухожилий и связок на разрыв. При этом большое значение имеет степень развития межмолекулярных поперечных связей в коллагеновых волокнах.

При общем большом сходстве морфологических и биохимических параметров связок и сухожилий нельзя не отметить, что содержание клеток и основного (межфибриллярного) вещества в связках, особенно внутрисуставных, выше, чем в сухожилиях. Одним из показателей этого является более высокое содержание в связках ДНК. Эти данные соответствует морфологической картине связок, в которой обращает на себя внимание сравнительно высокая насыщенность клетками.

Большое значение в супрамолекулярной организации сухожилий и связок имеют «малые» (богатые лейцином) протеогликаны декорин и фибромодулин. Они взаимодействуют с FACIT-коллагенами, включаясь, таким образом, в регулирование фибриллогенеза больших коллагенов. У животных с выключенными генами малых протеогликанов развивается серьезная дезорганизация структуры коллагеновых фибрилл в сухожилиях.

Сухожилия и связки неоднородны по химическому составу на своем протяжении. В подвергающихся давлению участках, в области прикрепления сухожилия кости, отмечены экспрессия агрекана, а также найдена значительно более активная экспрессия антиадгезивного гликопротеина тенасцина С, чем в подверженном растяжению центральном отделе. Предполагают, что тенасцин С в этих участках предохраняет фиброциты от компрессии, давая им возможность продуцировать компоненты, свойственные матриксу хряща. В этих же участках сухожилий, наряду с коллагеном I типа и связанными с ним FACIT-коллагенами, присутствуют коллагены, характерные для гиалинового хряща - И, IX, а также III типов.

Мениски. Диски. Суставные губы

Специфическими для ряда крупных суставов являются диски, мениски и суставные губы - структуры, состоящие из фиброзной ткани и хряща (преимущественно волокнистого).

Некоторые суставы человека (коленный, височно-челюстной, грудино-ключичный, лучезапястный) содержат особые образования, по сути близкие к внутрисуставным связкам, - мениски и диски. Мениски присутствуют в коленных суставах. Диски выявляются в остальных перечисленных выше суставах. Менискам и дискам свойственна двойственная биомеханическая функция: во-первых, они снижают компрессию, падающую на суставные хрящи; во-вторых, исполняют роль внутрисуставных связок, повышающих стабильность сустава. Этой функции менисков и дисков соответствует и материал, из которого они построены, а именно фиброзный (волокнистый) хрящ.

Суставные губы. Суставная губа имеется и в тазобедренном суставе. Функция ее аналогичная, а именно увеличивать размеры и выпуклость впадины сустава.

Немногочисленная клеточная популяция менисков и дисков состоит из фибробластов и уплощенных хондроцитов, близких по виду к хондроцитам поверхностной зоны суставных хрящей. Как и в волокнистой соединительной ткани, в менисках коленного сустава среди коллагеновых белков преобладает коллаген I типа, на который приходится не менее 90% общего количества коллагенов. Только около 10% составляют коллагены, свойственные гиалиновому хрящу, главным образом коллаген II типа. В эмбриональном периоде в ткани менисков экспрессируются лишь коллагены I, III и Vтипов, экспрессия коллагена II типа обнаруживается только после рождения, когда сустав начинает подвергаться механической нагрузке. Появляются также коллагены IX и VI.

В менисках и дисках содержатся свойственные гиалиновому хрящу агрегаты агрекана, но общее количество протеогликанов, определяемое, например, в ткани цельных менисков и дисков по концентрации гликозаминогликанов, примерно в 10 раз меньше, чем в суставном хряще. Кроме агрекана, мениски и диски содержат также небольшие количества «малых» протеогликанов - бигликана, декорина и фибромодулина. Они распределены в менисках неравномерно: их суммарная концентрация выше в тонких медиальных зонах, подвергающихся наиболее сильной компрессии.

Биосинтез протеогликанов в менисках человека увеличивается с возрастом. Между 20 и 62 годами экспрессия мРНК декорина увеличивается в 5 раз, мРНК агрекана - в 8 раз, хотя эти показатели продолжают оставаться гораздо более низкими по сравнению с суставными хрящами. Более значительное усиление экспрессии агрекана связано, вероятно, с возрастным повышением массы тела и увеличением компрессионной нагрузки на коленные суставы. Из числа гликопротеинов в менисках установлено наличие фибронектинов и тромбоспондинов.

Рыхлая волокнистая неоформленная соединительная ткань является самой распространенной, располагаясь рядом с эпителиальными тканями, в большем или меньшем количестве сопровождает кровеносные, лимфатические сосуды; входит в состав кожи и слизистых оболочек органов. В качестве прослоек оболочек, содержащих обилие сосудов, рыхлая волокнистая ткань обнаруживается во всех тканях и органах (рис. 30).

Межклеточное вещество представлено двумя компонентами: основным (аморфным) веществом - бесструктурным матриксом, имеющим студневидную консистенцию; волокнами - коллагеновыми и эластическими, располагающимися относительно рыхло и беспорядочно, поэтому ткань называется неоформленной. Рыхлая волокнистая неоформленная соединительная ткань за счет наличия межклеточного вещества выполняет опорно-трофическую функцию, клетки участвуют в иммунных реакциях и восстановительных процессах при тканевом повреждении. В составе соединительной ткани дифференцируются разнообразные по форме клетки: адвентициальные, фибробласты, фиброциты, гистиоциты, тучные клетки (тканевые базофилы), плазмоциты и жировые клетки. Адвентициальные (от лат. adventicus - пришлый, блуждающий) клетки наименее диф- ференцированны, располагаются вдоль наружной поверхности капилляров, являясь камбиальными, активно делятся митозом и дифференцируются в фибробласты, миофибробласты и липоциты. Фибробласты (от лат. fibrin - белок; blastos - росток, зарос-

Рис. 30

  • 7 - макрофаг; 2 - аморфное межклеточное вещество; 3 - плазматическая клетка;
  • 4 - жировая клетка; 5 - эндотелий; 6 - адвентициальная клетка; 7 - перицит;
  • 8 - эндотелиальная клетка; 9 - фибробласт; 10 - эластическое волокно; 11 -тучная клетка; 12 - коллагеновое волокно ток) - продуценты белка, являются постоянными и наиболее многочисленными клетками. У подвижных форм клеток в периферической части клетки содержатся сократимые нити, клетки с большим количеством сократимых нитей - миофибробласты - способствуют заживлению ран. Часть фибробластов оказывается заключенной между плотно расположенными волокнами, такие клетки называются фиброцитами, они утрачивают способность к делению, принимают удлиненную форму и имеют сильно уплощенные ядра. Макрофаги (гистиоциты) клетки, обладающие способностью фагоцитоза и накопления взвешенных коллоидных веществ в цитоплазме, участвуют в общих и местных защитных реакциях иммунитета. Ядро имеет четко очерченные контуры. Обладая способностью к направленному движению - хемотаксису, макрофаги мигрируют в очаг воспаления, где становятся доминирующими клетками. Макрофаги участвуют в распознавании, переработке и предъявлении антигена лимфоцитам. При воспалении клетки приходят в состояние раздражения, увеличиваются в размерах, обнаруживают способность к активному передвижению и превращаются в структуры, называемые полибластами. Макрофаги очищают очаг от инородных частиц и разрушенных клеток, но и стимулируют функциональную активность фибробластов. Тканевые базофилы (лаброциты, тучные клетки) имеют неправильно-овальную или округлую форму, в цитоплазме расположены многочисленные гранулы (зерна). Клетки содержат гистамин, способствующий расширению кровеносных сосудов, и выделяют гепарин, препятствующий свертыванию крови. Плазмоциты (плазматические клетки) синтезируют и выделяют основную массу иммуноглобулинов - антител (белки, образующиеся в ответ на действие антигена). Эти клетки встречаются в собственном слое слизистой оболочки кишечника, сальника, в соединительной ткани между дольками слюнных, молочных желез, в лимфатических узлах, костном мозге. Пигментные клетки имеют отростки, в цитоплазме много темно-коричневых или черных зерен пигмента из группы меланинов. В соединительной ткани кожи низших позвоночных - рептилий, амфибий, рыб - содержится значительное количество пигментных клеток - хроматофоров, обусловливающих ту или иную окраску внешнего покрова и выполняющих защитную функцию. Пигментные клетки у млекопитающих сосредоточены преимущественно в склере, сосудистой и радужной оболочках, ресничном теле. Жировые клетки (липоциты) образуются из адвентициальных клеток рыхлой соединительной ткани, которые обычно расположены группами вдоль кровеносных сосудов.

Препарат «Рыхлая волокнистая неоформленная соединительная ткань подкожной клетчатки крысы» (окраска гематоксилином). Препарат представляет собой небольшой участок фиксированной подкожной клетчатки, растянутой в виде тонкой пленки на покровном стекле. При слабом увеличении (х10) выявляется межклеточное вещество: бесструктурный аморфный матрикс и два вида волокон - довольно широкие коллагеновые волокна, имеющие лентовидную форму, и тонкие нитевидные эластические волокна. При большом увеличении микроскопа (х40) в составе соединительной ткани дифференцируются разнообразные по форме клетки: адвентициальные клетки - вытянутой формы клетки с длинными отростками; фибробласты - имеют веретеновидную форму, так как центральная часть значительно утолщена. Ядро крупное, окрашивается слабо, отчетливо выявляются одно-два ядрышка. Эктоплазма очень светлая, эндоплазма, напротив, окрашивается интенсивно за счет наличия большого количества гранулярной эндоплазматической сети, что обусловлено участием в синтезе высокомолекулярных веществ, необходимых как для построения волокон, так и для образования аморфного вещества. Макрофаги в цитоплазме содержат много вакуолей, что свидетельствует об активном участии в обмене веществ, контуры цитоплазмы четкие, отростки в виде псевдоподий, поэтому клетка сходна с амебой. Тканевые базофилы (лаброциты, тучные клетки) имеют неправильно-овальную или округлую форму, иногда с широкими короткими отростками, в цитоплазме расположены многочисленные базофильные гранулы (зерна). Плазмоциты (плазматические клетки) могут быть округлой или овальной формы; цитоплазма резко базофильная, исключение составляет лишь небольшой ободок цитоплазмы около ядра - перинуклеарная зона, по периферии цитоплазмы имеются многочисленные мелкие вакуоли.

Препарат «Жировая ткань сальника». Сальник представляет собой пленку, пронизанную кровеносными сосудами. При окраске Суданом III видны скопления желтых округлых жировых клеток. При окраске гематоксилином и эозином перстневидные жировые клетки не окрашиваются, фиолетовое ядро оттеснено на периферию цитоплазмы (рис. 31).

Во многих частях организма животных образуются значительные скопления жировых клеток, называемые жировой тканью. В связи с особенностями естественной окраски, спецификой строения и функции, а также расположением у млекопитающих различают две разновидности жировых клеток и, соответственно, два типа жировой ткани: белую и бурую.

Белая жировая ткань в значительном количестве содержится в так называемых жировых депо: подкожная жировая ткань, особенно развитая у свиней, жировая ткань вокруг почек в брыжейке (околопо- чечная клетчатка), у некоторых пород овец у корня хвоста (курдюк). Структурная единица белой жировой ткани - шаровидные жировые клетки, до 120 мкм в диаметре. При развитии клеток жировые вклю-


Рис. 31

а - тотальный препарат сальника (Судан III и гематоксилин); б - препарат подкожной жировой клетчатки (гематоксилин и эозин): 7 -липоцит;2 - кровеносный сосуд;

3 - долька жировой ткани; 4 - волокна и клетки рыхлой соединительной ткани

чения в цитоплазме появляются сначала в виде мелких рассеянных капель, позднее сливающихся в одну крупную каплю. Общее количество белой жировой ткани в организме животных различных видов, пород, пола, возраста, упитанности колеблется от 1 до 30% к живой массе. Запасные жиры наиболее высококалорийные вещества, при окислении которых в организме освобождается большое количество энергии (1 г жира = 39 кДж). У крупного рогатого скота мясных и мясо-молочных пород группы жировых клеток располагаются в прослойках рыхлой волокнистой соединительной ткани скелетных мышц. Мясо, полученное от таких животных, обладает наилучшими вкусовыми качествами и называется «мраморное». Подкожная жировая ткань имеет большое значение для защиты организма от механических повреждений, от потерь тепла. Жировая ткань вдоль сосудисто-нервных пучков обеспечивает относительную изоляцию, защиту и ограничение подвижности. Скопления жировых клеток в сочетании с пучками коллагеновых волокон в коже подошв и лап создают хорошие амортизационные свойства. Значительна роль жировой ткани как депо воды; образование воды - важная особенность обмена жиров у животных, обитающих в засушливых районах (верблюды). При голодании организм использует прежде всего запасные жиры из клеток жировых депо, в которых уменьшаются и исчезают жировые включения. Жировая ткань глазной орбиты, эпикарда, лап сохраняется даже при сильном истощении. Цвет жировой ткани зависит от вида, породы и типа кормления животных. У большинства животных, за исключением свиней и коз, в жире содержится пигмент каротин, придающий желтый цвет жировой ткани. У крупного рогатого скота жировая ткань перикарда содержит много коллагеновых волокон. Почечным жиром называют жировую ткань, окружающую мочеточники. В области спины жировая ткань свиней содержит мышечную ткань, а также нередко волосяные луковицы (щетину) и даже волосяные сумки. В области брюшины имеется скопление жировой ткани, так называемый брыжеечный или мезентериальный жир, где содержится большое количество лимфатических узлов, которые ускоряют окислительные процессы и порчу жира. В брыжеечном жире часто встречаются кровеносные сосуды, например у свиней больше артерий, а у крупного рогатого скота больше вен. Внутреннее сало представляет собой жировую ткань, расположенную под брюшиной, содержит большое количество волокон, располагающихся в косом и перпендикулярном направлениях. Иногда в жировой ткани свиней обнаруживаются пигментные зерна, в таких случаях выявляются коричневые или черные пятна.

Бурая жировая ткань в значительном количестве имеется у грызунов и животных, впадающих в зимнюю спячку, а также у новорожденных животных других видов. Расположение преимущественно под кожей между лопатками, в шейной области, средостении и вдоль аорты. Бурая жировая ткань состоит из относительно мелких клеток, очень плотно прилегающих друг к другу, напоминая внешне железистую ткань. К клеткам подходят многочисленные нервные волокна, оплетенные густой сетью кровеносных капилляров. Для клеток бурой жировой ткани характерны центрально расположенные ядра и наличие в цитоплазме мелких жировых капель, слияние которых в более крупную каплю не происходит. В цитоплазме между жировыми каплями расположены гранулы гликогена и многочисленные митохондрии, окрашенные белки системы транспортных электронов - цитохромы придают бурый цвет этой ткани. В клетках бурой жировой ткани интенсивно идут окислительные процессы, сопровождаемые выделением значительного количества энергии. Однако большая часть образующейся энергии расходуется не на синтез молекул АТФ, а на теплообразование. Такое свойство липоцитов бурой ткани является важным для регуляции температуры у новорожденных животных и согревания животных после пробуждения от зимней спячки.

Контрольные вопросы

  • 1. Дайте характеристику эмбриональной соединительной ткани - мезенхиме.
  • 2. Какова структура клеток мезенхимы?
  • 3. Дайте структурно-функциональную характеристику клеткам ретикулярной соединительной ткани.
  • 4. Какую структуру имеют ретикулярные волокна и как их выявить на гистологических препаратах?
  • 5. Дайте характеристику клеткам рыхлой волокнистой соединительной ткани.
  • 6. Какова структура межклеточного вещества?
  • 7. Какую функцию выполняет бесструктурный матрикс - основное вещество?
  • 8. Какова структура и функция волокон рыхлой волокнистой соединительной ткани?
  • 9. С помощью какого красителя можно выявить включения жира?