Организм всех животных, в том числе и человека, состоит из четырех нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются. Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека. Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов. Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой. Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами. Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты. Они могут быть построены из двух актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная. Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.
  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии. Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы. Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную "полосатость" ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура. При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.
  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой. Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

РАЗВИТИЕ. Источником развития сердечной мьшючной ткани явля­ется миоэпикардиальная пластинка - часть висцерального сплаихпотома в шейном отделе зародыша. Ее клетки превращаются в миобласты, которые активно делятся митозом и дифференцируются. В цитоплазме миобластов синтезируются миофиламенты, формирующие миофибриллы. Вначале миофибриллы не имеют исчерченности и определенной ориентации в цитоплазме. В процессе дальнейшей дифференцировки принимают про­дольную ориентацию и тонкими миофиламентами прикрепляются к форми­рующимся уплотнениям сарколеммы (Z-вещество).

В результате все возрастающей упорядоченности миофиламентов мио­фибриллы приобретают поперечную исчерчениость. Образуются кардиоми- оциты. В их цитоплазме нарастает содержание органелл: митохондрий, гра нулярной ЭПС, свободных рибосом. В процессе дифференцировки кардио миоциты не сразу теряют способность к делению и продолжают размно­жаться. В некоторых клетках может отсутствовать цитотомия, что ведет к появлению двуядерных кардиомиоцитов. Развивающиеся кардиомиоциты имеют строго определенную пространственную ориентацию, выстраиваясь в виде цепочек и образуя друг с другом межклеточные контакты - вставоч­ные диски. В результате дивергентной дифференцировки кардиомиоциты превращаются в клетки трех типов: 1) рабочие, или типичные, сократи­тельные; 2) проводящие, или атипичные; 3) секреторные (эндокрин­ные). В результате терминальной дифференцировки кардиомиоциты к мо­менту рождения или в первые месяцы постнаталыюго онтогенеза теряют способность к делению. В зрелой сердечной мышечной ткани камбиальные клетки отсутствуют.

СТРОЕНИЕ. Сердечная мышечная ткань образована клетками карди-омиоцитами. Кардиомиоциты являются единственным тканевым элемен­том сердечной мышечной ткани. Они соединяются друг с другом при по­мощи вставочных дисков и образуют функциональные мышечные волокна, или функциональный симпласт, не являющийся симпластом в морфологи­ческом понятии. Функциональные волокна разветвляются и анастомози-руют боковыми поверхностями, в результате чего образуется сложная трехмерная сеть (рис. 12.15).



Кардиомиоциты имеют вытянутую прямоугольную слабоотростчатую форму. Они состоят из ядра и цитоплазмы. Многие клетки (более полови­ны у взрослого индивидуума) являются двуядерными и полиплоидными. Степень полиплоидизации различна и отражает адаптивные возможности миокарда. Ядра крупные, светлые, находятся в центре кардиомиоцитов.

Цитоплазма (саркоплазма) кардиомиоцитов обладает выраженной ок-сифилией. В ней содержится большое количество органелл и включений. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как в скелетной мышеч­ной ткани (рис. 12.16). В отличие от миофибрилл скелетной мышечной ткани, лежащих строго изолированно, в кардиомиоцитах миофибриллы нередко сливаются друг с другом с образованием единой структуры и со­держат сократимые белки, химически отличающиеся от сократимых бел­ков миофибрилл скелетных мышц.

СИР и Т-трубочки развиты слабее, чем в скелетной мышечной ткани, что связано с автоматией сердечной мышцы и меньшим влиянием не­рвной системы. В отличие от скелетной мышечной ткани СПР и Т-трубочки образуют не триады, а диады (к Т-трубочке прилежит одна цистерна СПР). Типичные терминальные цистерны отсутствуют. СПР менее интенсивно ак­кумулирует кальций. Снаружи кардиоциты покрыты сарколеммой, состоящей из плаз-молеммы кардиомпоцита и базаль-ной мембраны снаружи. Вазальная мембрана тесно связана с межкле­точным веществом, в нес вплетают­ся коллагеновые и эластические во­локна. Базальная мембрана отсут­ствует в местах вставочных дисков. Со вставочными дисками свя­заны компоненты цитоскелета. Че­рез интегрины цитолеммы они также связаны с межклеточным ве­ществом. Вставочные диски - это место контактов двух кардио­миоцитов, комплексы межклеточ­ных контактов. Они обеспечивают как механическую, так и химичес­кую, функциональную коммуни­кацию кардиомиоцитов. В свето­вом микроскопе имеют вид тем­ных поперечных полосок (рис. 12.14 б). В электронном микроско­пе вставочные диски имеют зигза­гообразный, ступеньчатый вид или вид зубчатой линии. В них можно выделить горизонтальные и верти­кальные участки и три зоны (рис. 12.1,12.15 6).


1. Зоны десмосом и поло­сок слипания. Находятся на вер­тикальных (поперечных) участках дисков. Обеспечивают механичес­кое соединение кардиомиоцитов.

2. Зоны нексусов (щеле­вых контактов) - места переда­чи возбуждения с одной клетки на другую, обеспечивают химическую коммуникацию кардиомиоцитов. Обнаруживаются на продольных участках вставочных дисков.3. Зоны прикрепления миофибрилл. Находятся на поперечных участках вставоч­ных дисков. Служат местами прикрепления актиновых фила-ментов к сарколемме кардиоми-оцита. Это прикрепление про­исходит к Z-полоскам, обнару­живаемым на внутренней по­верхности сарколеммы и анало­гичным Z-линиям. В области вставочных дисков обнаружива­ются в большом количестве кадгерины (адгезивные моле­кулы, осуществляющие каль-цийзависимую адгезию кардио-миоцитов друг с другом).

Типы кардиомиоцитов. Кардиомиоциты имеют разные свойства в разных участках серд­ца. Так, в предсердиях они мо­гут делиться митозом, а в желу­дочках никогда не делятся. Раз­личают три тина кардиомиоци­тов, существенно отличающихся друг от друга гак строением, так и функциями: рабочие, сек­реторные, проводящие.

1. Рабочие кардиомио­циты имеют структуру, описан­ную выше.

2. Среди предсердных миоцитов есть секреторные кардиомиоциты, которые вырабатывают натрийуретический фактор (НУФ), усиливаю­щий секрецию натрия почками. Кроме этого, НУФ расслабляет гладкие ми-оциты стенки артерий и подавляет секрецию гормонов, вызывающих гипер-тензию (альдостерона и вазопрессина). Все это ведет к увеличению диуре­за и просвета артерий, снижению объема циркулирующей жидкости и в результате - к снижению артериального давления. Секреторные кардио­миоциты локализуются в основном в правом предсердии. Следует отметить, что в эмбриогенезе способностью к синтезу обладают все кардиомиоциты, но в процессе дифференцировки кардиомиоциты желудочков обратимо те-ряют эту способность, которая может восстанавливаться здесь при перенап­ряжении сердечной мышцы.


3. Значительно отличаются от рабочих кардиомиоцитов проводящие (атипичные) кардиомиоциты. Образуют проводящую систему сердца (см. "сердечно-сосудистую систему"). Они в два раза больше рабочих кардио­миоцитов. В этих клетках содержится мало миофибрилл, увеличен объем саркоплазмы, в которой выявляется значительное количество гликогена. Благодаря содержанию последнего цитоплазма атипичных кардиомиоци­тов плохо воспринимает окраску. В клетках содержится много лизосом и отсутствуют Т-трубочки. Функцией атипичных кардиомиоцитов является генерация электрических импульсов и передача их на рабочие клетки. Не­смотря на автоматизм, работа сердечной мышечной ткани строго регули­руется вегетативной нервной системой. Симпатическая нервная система учащает и усиливает, парасимпатическая - урежает и ослабляет сердеч­ные сокращения.

РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ. Физиологи­ческая регенерация. Реализуется на внутриклеточном уровне и протекает с высокой интенсивностью и скоростью, поскольку сердечная мышца несет огромную нагрузку. Еще более она возрастает при тяжелой физической работе и в патологических условиях (гипертоническая болезнь и др.). При этом происходит постоянное изнашивание компонентов цитоплазмы кар­диомиоцитов и замещение их вновь образованными. При повышенной на­грузке на сердце происходит гипертрофия (увеличение размеров) и гиперп­лазия (увеличение количества) органелл, в том числе и миофибрилл с на­растанием в последних количества саркомеров. В молодом возрасте отме­чаются также полиплоидизация кардиомиоцитов и появление двуядерных клеток. Рабочая гипертрофия миокарда характеризуется адекватным адап­тивным разрастанием его сосудистого русла. При патологиии (например, пороки сердца, также вызывающие гипертрофию кардиомиоцитов) этого не происходит, и через некоторое время из-за нарушения питания происхо­дит гибель части кардиомиоцитов с замещением их рубцовой тканью (кардиосклероз).

Репаративная регенерация. Происходит при ранениях сердечной мышцы, инфарктах миокарда и при других ситуациях. Поскольку в сердеч­ной мышечной ткани пет камбиальных клеток, то при повреждении миокар­да желудочков регенераторные и адаптивные процессы идут на внутрикле­точном уровне в соседних кардиомиоцитах: они увеличиваются в размерах и берут на себя функцию погибших клеток. На месте погибших кардиомио­цитов образуется соединительнотканный рубец. В последнее время уста­новлено, что некроз кардиомиоцитов при инфаркте миокарда захватывает только кардиомиоциты сравнительно небольшого участка зоны инфаркта и близлежащей зоны. Более значительное количество кардиомиоцитов, окру­жающих зону инфаркта, погибает путем апрптоза, и этот процесс является ведущим в гибели клеток сердечной мышцы. Поэтому лечение инфаркта ми­окарда в первую очередь должно быть направлено на подавление апоптоза кардиомиоцитов в первые сутки после наступления инфаркта.

При повреждении миокарда предсердий в небольшом объеме может осуществляться регенерация на клеточном уровне.

Стимуляция репаративной регенерации сердечной мышечной ткани. 1) Предотвращение апоптоза кардиомиоцитов назначением препаратов, улучшающих микроциркуляцию миокарда, снижающих свертывание кро­ви, ее вязкость и улучшающих реологические свойства крови. Успешная борьба с постинфарктным апоптозом кардиомиоцитов является важным условием дальнейшей успешной регенерации миокарда; 2) Назначение анаболических препаратов (витаминного комплекса, препаратов РНК и ДНК, АТФ и др.); 3) Раннее применение дозированных физических нагру­зок, комплекса упражнений лечебной физкультуры.

В последние годы в экспериментальных условиях для стимуляции ре­генерации сердечной мышечной ткани стали применять трансплантацию миосателлитоцитов скелетной мышечной ткани. Установлено, что введен­ные в миокард миосателлитоциты формируют скелетные мышечные во­локна, устанавливающие тесную не только структурную, но и функцио­нальную связь с кардиомиоцитами. Поскольку замещение дефекта мио­карда не инертной соединительной, а проявляющей сократительную ак­тивность скелетной мышечной тканью более выигрышно в функциональ­ном и даже в механическом отношении, то дальнейшая разработка этого метода может оказаться перспективной при лечении инфарктов миокарда у людей.

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома в шейной части зародыша - так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда.

В ходе гистогенеза возникает 3 вида кардиомиоцитов:

  • рабочие, или типичные, или же сократительные, кардиомиоциты,
  • атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты)
  • секреторные кардиомиоциты.

Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.

Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах.

Сократительные кардиомиоциты имеют удлиненную (100-150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски. Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа. Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Возможности регенерации сердечной мышечной ткани. При длительной усиленной работе (например, в условиях постоянно повышенного артериального давления крови) происходит рабочая гипертрофия кардиомиоцитов. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани не обнаружено, поэтому погибающие кардиомиоциты (в частности, при инфаркте миокарда) не восстанавливаются, а замещаются элементами соединительной ткани.

Эта ткань локализуется в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов.

Функциональные особенности

1) автоматизм,

2) ритмичность,

3) непроизвольность,

4) малая утомляемость.

На активность сокращений оказывают влияние гормоны и нервная система (симпатическая и парасимпатическая).

Б.2.1. Гистогенез сердечной мышечной ткани

Источником развития сердечной мышечной ткани является миоэпикардиальная пластинка висцерального листка спланхнотома. В ней образуются СКМ (стволовые клетки миогенеза), дифференцирующиеся в кардиомиобласты, активно размножающиеся митозом. В их цитоплазме постепенно образуются миофиламенты, формирующие миофибриллы. С появлением последних клетки именуются кардиомиоцитами (или сердечными миоцитами ). Способность кардиомиоцитов человека к полному митотическому делению утрачивается к моменту рождения или в первые месяцы жизни. В этих клетках начинаются процессы полиплоидизации . Сердечные миоциты выстраиваются в цепочки, но не сливаются друг с другом, как это происходит при развитии скелетного мышечного волокна. Клетки формируют сложные межклеточные соединения - вставочные диски, связывающие кардиомиоциты в функциональные волокна (функциональный синцитий ).

Строение сердечной мышечной ткани

Как уже отмечалось, сердечная мышечная ткань образована клетками - кардиомиоцитами, связанными друг с другом в области вставочных дисков и образующими трехмерную сеть ветвящихся и анастомозирующих функциональных волокон.

Разновидности кардиомиоцитов

1. сократительные

1) желудочковые (призматические)

2) предсердные (отростчатые)

2. кардиомиоциты проводящей системы сердца

1) пейсмекеры (Р-клетки, водители ритма 1 порядка)

2) переходные (водители ритма 2 порядка)

3) проводящие (водители ритма 3 порядка)

3. секреторные (эндокринные)

Типы кардиомиоцитов

Локализация и функции кардиомиоцитов

А. Сократительные кардиомиоциты (СКМЦ)

1. Желудочковые (призматические)

2. Предсердные (отростчатые)

Сократительный миокард желудочков и предсердий

Мышечные оболочки устьев аорты и легочной артерии

Непроизвольное ритмичное сокращение – расслабление в автоматическом круглосуточном режиме

Б.

1. Пейсмекеры (Р- клетки, водители ритма I порядка)

2. Переходные (водители ритма II порядка)

3. Проводящие (водители ритма Ш порядка)

В структурных компонентах ПСС (узлы, пучки, ножки и др.)

Ритмичная генерация биопотенциалов (в автоматическом режиме), их проведение в сердечной мышце и передача на СКМЦ

В. Секреторные (эндокрин-ные) кардиомиоциты

В миокарде предсердий

Секреция натрийуретического фактора (регулирует функцию почек)

Кардиомиоциты проводящей системы сердца (ПСС)

Неправильная призматическая форма

Размер по длиннику 8- 20 мкм, в ширину 2-5 мкм

Слабое развитие всех органелл (в т.ч. миофибрилл)

Вставочные диски имеют меньше десмосом

Секреторные (эндокринные) кардиомиоциты

Отростчатая форма

Размер по длиннику 15-20 мкм, в ширину 2-5 мкм

Общий план строения (см. выше СКМЦ)

Развиты органеллы экспортного синтеза

Много секреторных гранул

Миофибриллы развиты слабо

Структурно-функциональные аппараты кардиомиоцитов

1. Сократительный аппарат (наиболее развит в СКМЦ)

Представлен миофибриллами , каждая из которых состоит из тысяч последовательно соединенных телофрагмами саркомеров , содержащих актиновы е (тонкие) и миозиновые (толстые) миофиламенты. Конечные участки миофибрилл прикрепляются со стороны цитоплазмы к вставочным дискам с помощью полосок слипания (расщепления и вплетения актиновых нитей в подмембранные области плазмолеммы миоцитов

Обеспечивает сильное ритмичное энергоемкое кальцийзависимое сокращение ↔ расслабление («модель скользящих нитей»)

2. Транспортный аппарат (развит в СКМЦ) - аналогичен таковому в скелетных мышечных волокнах

3. Опорный аппарат

Представлен сарколеммой, вставочными дисками, полосками слипания, анастомозами, цитоскелетом, телофрагмами, мезофрагмами .

Обеспечивает формообразовательную, каркасную, локомоторную и интеграционную функции.

4. Трофико-энергетический аппарат – представлен саркосомами и включениями гликогена, миоглобина и липидов .

5. Аппарат синтеза, структуризации и регенерации.

Представлен свободными рибосомами, ЭПС, кГ, лизосомами, секреторными гранулами (в секреторных кардиомиоцитах)

Обеспечивает ресинтез сократительных и регуляторных белков миофибрилл, другие эндорепродукционные процессы, секрецию компонентов базальной мембраны и ПНУФ (секреторные кардиомиоциты)

6. Нервный аппарат

Представлен нервными волокнами , рецепторными и двигательными нервными окончаниями вегетативной нервной системы.

Обеспечивает адаптационную регуляцию сократительной и других функций кардиомиоцитов.

Регенерация сердечной мышечной ткани

А. Механизмы

1. Эндорепродукция

2. Синтез компонентов базальной мембраны

3. Пролиферация кардиомиоцитов возможна в эмбриогенезе

Б. Виды

1. Физиологическая

Протекает постоянно, обеспечивает возрастное (в т.ч. у детей) увеличение массы миокарда (рабочая гипертрофия миоцитов без гиперплазии)

Усиливается при повышении нагрузки на миокард → рабочая гипертрофия миоцитов без гиперплазии (у людей физического труда, у беременных)

2. Репаративная

Дефект мышечной ткани кардиомиоцитами не восполняется (на месте повреждения образуется соединительнотканный рубец)

Регенерация кардиомиоцитов (и физиологическая, и репаративная) осуществляется только по механизму эндорепродукции. Причины:

1) отсутствуют малодифференцированные клетки,

2) кардиомиоциты не способны к делению,

3) они не способны к дедифференцировке.

"

Мышечные ткани объединяет способность к сокращению.

Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначениямиофибриллы .

Классификация мышечных тканей

1. Морфофункциональная классификация:

1) Поперечнополосатая, или исчерченная мышечная ткань: скелетная и сердечная;

2) Неисчерченная мышечная ткань: гладкая.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

Функции мышечной ткани : перемещение тела или его частей в пространстве.

СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека. Именно эти мышцы задействованы при занятии спортом.

Гистогенез. Скелетная мышечная ткань развивается из клеток миотомов миобластов. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов. Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие с 3 недели внутриутробного развития мигрируют в мезенхиму и, сливаясь друг с другом, образуют мышечные трубки (миотубы ) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают, грЭПС значительно редуцируется. Такая многоядерная структура называется симпласт , а для мышечной ткани – миосимпласт . Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и впоследствии принимают участие в регенерации мышечной ткани.

Строение скелетной мышечной ткани

Рассмотрим строение мышечной ткани на нескольких уровнях организации живого: на органном уровне (мышца как орган), на тканевом (непосредственно мышечная ткань), на клеточном (строение мышечного волокна), на субклеточном (строение миофибриллы) и на молекулярном уровне (строение актиновых и миозиновых нитей).

На каритнке:

1 — мышца икроножная (органный уровень), 2 — поперечный срез мышцы (тканевой уровень) — мышечные волокна, между которыми РВСТ: 3 — эндомизий, 4 — нервное волокно, 5 — кровеносный сосуд; 6 — поперечный срез мышечного волокна (клеточный уровень): 7 — ядра мышечного волокна — симпласта, 8 — митохондрия между миофибриллами, синим цветом — саркоплазматический ретикулум; 9 — поперечный срез миофибриллы (субклеточный уровень): 10 — тонкие актиновые нити, 11 — толстые миозиновые нити, 12 — головки толстых миозиновых нитей.

1) Органный уровень: строение мышцы как органа.

Скелетная мышца состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Эндомизий – прослойки РВСТ между мышечными волокнами, где проходят кровеносные сосуды, нервные окончания. Перимизий – окружает 10-100 пучков мышечных волокон. Эпимизий – наружная оболочка мышцы, представлена плотной волокнистой тканью.

2) Тканевой уровень: строение мышечной ткани.

Структурно-функциональной единицей скелетной поперечнополосатой (исчерченной) мышечной ткани является мышечное волокно – цилиндрической формы образование диаметром 50 мкм и длиной от 1 до 10-20 см. Мышечное волокно состоит из 1) миосимпласта (образование его смотри выше, строение – ниже), 2) мелких камбиальных клеток – миосателлитоцитов , прилежащих к поверхности миосимпласта и располагающиеся в углублениях его плазмолеммы, 3) базальной мембраны, которой покрыта плазмолемма. Комплекс плазмолеммы и базальной мембраны называется сарколемма . Для мышечного волокна характерна поперечная исчерченность, ядра смещены на периферию. Между мышечными волокнами – прослойки РВСТ (эндомизий).

3) Клеточный уровень: строение мышечного волокна (миосимпласта).

Термин «мышечное волокно» подразумевает «миосимпласт», поскольку миосимпласт обеспечивает функцию сокращения, миосателлитоциты участвуют только в регенерации.

Миосимпласт , как и клетка, состоит из 3-х компонентов: ядра (точнее множества ядер), цитоплазмы (саркоплазма) и плазмолеммы (которая покрыта базальной мембраной и называется сарколемма). Почти весь объём цитоплазмы заполнен миофибриллами – органеллами специального назначения, органеллы общего назначения: грЭПС, аЭПС, митохондрии, комплекс Гольджи, лизосомы, а также ядра смещены на периферию волокна.

В мышечном волокне (миосимпласте) различают функциональные аппараты: мембранный , фибриллярный (сократительный) и трофический .

Трофический аппарат включает ядра, саркоплазму и цитоплазматические органеллы: митохондрии (синтез энергии), грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз изношенных структурных компонентов волокна).

Мембранный аппарат : каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), которая образует впячивания (Т -трубочки). К каждой Т -трубочке примыкают по две цистерны триаду : две L -трубочки (цистерны аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС концентрируются Са 2+ , необходимый при сокращении. К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Большую часть цитоплазмы исчерченных волокон занимают органеллы специального назначения – миофибриллы, ориентированы продольно, обеспечивающие сократительную функцию ткани.

4) Субклеточный уровень: строение миофибриллы.

При исследовании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками, или А - дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными, или I -дисками.

В середине диска А имеется более светлый участок – Н -зона, где содержатся только толстые нити белка миозина. В середине Н -зоны (значит и А -диска) выделяется более темная М -линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z , которая построена из белковых фибриллярных молекул. Z -линия соединена с соседними миофибриллами с помощью белка десмина, и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечнополосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S ) это пучок миофиламентов заключенный между двумя Z -линиями. Миофибрилла состоит из множества саркомеров. Формула, описывающая структуру саркомера:

S = Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

5) Молекулярный уровень: строение актиновых и миозиновых филаментов .

Под электронным микроскопом миофибриллы представляют агрегаты из толстых, или миозиновых , и тонких, или актиновых , филаментов. Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты, или миозиновые нити, (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм) состоят из молекул белка миозина, являющимся важнейшим сократительным белком мышцы, по 300-400 молекул миозина в каждой нити. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах шаровидные головки. Между головкой и тяжелой цепью находится шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок – легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Миозин обладает АТФ-азной активностью: высвобождающаяся энергия используется для мышечного сокращения.

Тонкие филаменты, или актиновые нити, (диаметр 7-8 нм), образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера – А -диск, тонкие занимают I - диски и частично входят между толстыми миофиламентами. Н -зона состоит только из толстых нитей.

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропонином и тропомиозином. При высокой концентрации ионов кальция конформационные изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина.

Двигательная иннервация мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей РВСТ. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна .

Сокращение мышцы

При сокращении мышечные волокна укорачиваются, но длина актиновых и миозиновых филаментов в миофибриллах не изменяется, а происходит их движение друг относительно друга: миозиновые нити вдвигаются в пространства между актиновыми а, актиновые – между миозиновыми. В результате этого уменьшается ширина I -диска, H -полоски и уменьшается длина саркомера; ширина А -диска не изменяется.

Формула саркомера при полном сокращении:S = Z 1 + А + Z 2

Молекулярный механизм мышечного сокращения

1. Прохождение нервного импульса через нервно-мышечный синапс и деполяризация плазмолеммы мышечного волокна;

2. Волна деполяризации проходит по Т -трубочкам (впячивания плазмолеммы) до L -трубочек (цистерны саркоплазматического ретикулума);

3. Открытие кальциевых каналов в саркоплазматическом ретикулуме и выход ионов Са 2+ в саркоплазму;

4. Кальций диффундирует к тонким нитям саркомера, связывается с тропонином С, приводя к конформационным изменениям тропомиозина и освобождая активные центры для связывания миозина и актина;

5. Взаимодействие миозиновых головок с активными центрами на молекуле актина с образованием актино-миозиновых «мостиков»;

6. Миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, при этом актиновые нити подтягиваются в пространство между миозиновыми нитями к M -линии, сближая две Z -линии;

7. Расслабление: Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Разрываются связи тропонина С с кальцием, тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Каждое движение головки миозина (присоединение к актину и отсоединение) сопровождается затратой энергии АТФ.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс. При избыточном растяжении мышцы возникает чувство боли.

Классификация и типы мышечных волокон

1. По характеру сокращения: фазные и тонические мышечные волокна. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические мышечные волокна (медленные) обеспечивают поддержание статического напряжения или тонуса, что играет роль в сохранения определённого положения тела в пространстве.

2. По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации и содержанием миоглобина. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

3. По типу окислительного обмена : оксидативные, гликолитические и промежуточные . Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А -типа (гликолитические) с низкой активностью СДГ, С -тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В -типа занимают промежуточное положение. Переход мышечных волокон от А -типа в С -тип маркирует изменения от анаэробного гликолиза к метаболизму, зависящему от кислорода.

У спринтеров (спортсменов, когда нужен быстрое недолгое сокращение, культуристов) тренировки и питание направлено на развитие гликолитических, быстрых, белых мышечных волкон : в них много запасов гликогена и энергия добывается преимущественно анаэолбным путём (белое мясо у курицы). У стайеров (спортсменов — марафонцев, в тех видах спорта, где необходима выносливость) преобладают оксидативные, медленные, красные волокна в мышцах — в них много митохондрий для аэробного гликолиза, кровеносных сосудов (нужен кислород).

4. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные , которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные , входящие в состав проприоцепторов – нервно-мышечных веретен.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, местоположение мышцы, уровень васкуляризации и двигательной активности.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Сердечная мышечная тканьнаходится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям (непроизвольные сокращения).

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома мезодермы в шейном отделе), клетки которой размножаются митозом, а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Строение . Структурная единица сердечной мышечной ткани – клетка кардиомиоцит. Между клетками находятся прослойки РВСТ с кровеносными сосудами и нервами.

Типы кардиомиоцитов : 1) типичные (рабочие, сократительные), 2) атипичные (проводящие), 3) секреторные .

Типичные кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты – клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками , в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный , фибриллярный (сократительный), трофический, а также энергетический .

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и олокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток – жирных кислот , которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

Мембранный аппарат : каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т -трубочки). К каждой Т -трубочке примыкает одна цистерна (в отличие от мышечного волокна – там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду : одна L -трубочка (цистерна аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са 2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат .Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения – миофибриллы, ориентированы продольно и расположенные по периферии клетки.Сократительный аппарат рабочих кардиомиоцитовсходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т -трубочки широкие и образуют диады (одна Т -трубочка и одна цистерна сети), которые сходятся в области Z -линии.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов : обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты

Секреторные кардиомиоцитынаходятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра – секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Функция секреторных кардиомиоцитов : эндокринная.

Регенерация кардиомиоцитов. Для кардиомиоцитов характерна только внутриклеточная регенерация. Кардиомиоциты не способны к делению, у них отсутствуют камбиальные клетки.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая мышечная ткань образует стенки внутренних полых органов, сосудов; характеризуется отсутствием исчерченности, непроизвольными сокращениями. Иннервация осуществляется вегетативной нервной системой.

Структурно-функциональная единица неисчерченной гладкой мышечной ткани – гладкая мышечная клетка (ГМК), или гладкий миоцит. Клетки имеют веретенообразную форму длиной 20-1000 мкм и толщиной от 2 до 20 мкм. В матке клетки имеют вытянутую отростчатую форму.

Гладкий миоцит

Гладкий миоцит состоит из расположенного в центре ядра палочковидной формы, цитоплазмы с органеллами и сарколеммы (комплекс плазмолеммы и базальной мембраны). В цитоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены косо или вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновых нитей больше и они прикрепляются к плотным тельцам, которые образованы специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной, они значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал, идущий по нервным волокнам, обуславливает выделение медиатора, что изменяет состояние плазмолеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в цитооплазму: кавеолы отшнуровываются и вместе с ионами кальция попадают в клетку. Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин в гладких миоцитах способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом – киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы мышечных клеток

Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства фибробластов (синтезируют межклеточное вещество) и гладких миоцитов (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины. Миофибробласты обеспечивают стягивание краёв раны.

Эндокринные гладкие миоциты – это видоизмененные ГМК, представляющие основной компонент юкстагломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Регенерация гладкой мышечной ткани. Гладкие миоциты характеризуются внутриклеточной регенерацией. При повышении функциональной нагрузки происходит гипертрофия миоцитов и в некоторых органах гиперплазия (клеточная регенерация). Так, при беременности гладко-мышечные клетки матки могут увеличиваться в 300 раз.