Урок по теме «Зрительный анализатор. Гигиена зрения».



Цели урока : раскрыть строение и значение зрительного анализатора; углубить знания о строении и функциях глаза и его частей, показать взаимосвязь строения и функций, ярко выраженной в этом органе; рассмотреть механизм проектирования изображения на сетчатке глаза и его регуляцию.

Оборудование: таблица «Зрительный анализатор», ПК, мультимедийный проектор.

Ход урока

    Организационный момент.

    Проверка знаний.

Учащимся предлагается выбрать вопрос, на который они могут дать ответ.

Вопросы на экране.

    Какие органы относятся к органам чувств?

    С чего начинается анализ внешних событий и внутренних ощущений человеком? (с раздражения рецепторов)

    Что называется, анализатором, из чего он состоит ? (Анализатор = рецептор + чувствительный нейрон + соответствующая зона коры полушарий большого мозга.) – на доске собрать схему.
    (Системы состоящие из рецепторов, проводящих путей, и центров в коре головного мозга)

    Почему для нормальной работы любого анализатора необходима сохранность всех его частей?

    Почему не происходит путаницы информации, получаемой от разных анализаторов? (Каждый из нервных импульсов поступает в соответствующую ему зону коры большого мозга, здесь происходит анализ ощущений, формирование образов, полученных от органов чувств.)

    Почему при нарушении деятельности рецепторов человек и животные засыпают?

    В чем заключается значение анализаторов? (в восприятии событий вокруг нас, достоверности информации, способствуют выживанию организма в данных условиях).

    Изучение новой темы.

    Игра.

Выходят 2 желающий, одному завязывают глаза, другой играет роль немого, им предлагают взять в руки любой из предметов, находящийся перед ним (яблоко, или два яблока разного цвета, тюбик с кремом и т.д.). Ученикам предлагается описать предмет, который у них в руках. После делается вывод, кто больше может рассказать о предмете. Что это? Какие органы чувств работают в этом случае? И т.д.

Вывод: можно рассказать о предмете почти все, не видя его. Но вот цвет предмета, его передвижения, изменения, без органа зрения определить нельзя.

Какой анализатор мы будем сегодня изучать?

Дети сами называют ответ. (Зрительный анализатор)

Мы живем с вами среди прекрасных красок, звуков и запахов. Но способность видеть больше всего влияет на наше восприятие мира. На эту особенность обратили внимание еще ученые в Древнем Мире. Так Платон утверждал, что самыми первыми из всех органов боги устроили светоносные глаза. Боги богами, им место в древних мифах, но факт остается фактом: именно благодаря глазам мы с вами получаем 95% информации об окружающем мире, они же, по подсчетам И.М. Сеченова, дают человеку до 1000 ощущений в минуту.

Что значат подобные цифры для человека XXI века, привыкшего оперировать двузначными степенями, и миллиардами? И все же они для нас очень важны.

Я просыпаюсь утром и вижу лица своих родных людей.

Я выхожу утром на улицу и вижу солнце или тучи, желтые одуванчики среди зеленой травы или заснеженные сопки вокруг.

А теперь представьте на минуту, что вся красота окружающего нас мира исчезла. Вернее, это голубое небо, вулканы под белым покрывалом, лица друзей, улыбающиеся весеннему солнцу, существуют, но где-то вне нашего зрения. Мы не можем этого увидеть, или видим только часть...

Вы скажете, слава Богу, это не с нами. Мы просто не представляем свою жизнь в темноте.

Вообще, надо отметить, что человеку, в отличие от многих млекопитающих, повезло. Мы обладаем цветовым зрением, но не воспринимаем ультрафиолетовые волны и поляризованный свет, помогающий ориентироваться в тумане некоторым насекомым.

Как же устроены наши глаза, в чем состоит принцип их работы? Сегодня на уроке мы приоткроем эту тайну.

Глаз – периферическая часть зрительного анализатора. Орган зрения расположен в глазнице (весит 6-8 г.). Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Движения осуществляются мышцами. Всего их 6, 4 прямые и 2 косые.

Опишите глазами восьмерку, повторите 3 раза, посмотрите в дальний правый угол, медленно переведите взгляд в дальний левый угол, повторите 3 раза.

Коротко строение и работу глаза можно описать так: поток света, содержащий информацию о предмете, попадает на роговицу, затем через переднюю камеру проходит сквозь зрачок, потом сквозь хрусталик и стекловидное тело, проецируется на сетчатку, светочувствительные нервные клетки которой превращают оптическую информацию в электрические импульсы и по зрительному нерву посылают их в мозг. Приняв этот закодированный сигнал, мозг обрабатывает его и превращает в восприятие. Как итог - человек видит предметытакими, какие они есть.

Роговица

склерой (белочная оболочка).

Роговица - прозрачная оболочка, покрывающая переднюю часть глаза. Она имеет сферическую форму и совершенно прозрачна. Лучи света, падающие на глаз, сперва проходят через роговицу, которая сильно преломляет их. Роговица граничит с непрозрачной внешней оболочкой глаза - склерой (белочная оболочка).

Передняя камера глаза и радужная оболочка

После роговой оболочки световой луч проходит через переднюю камеру глаза - пространство между роговицей и радужкой, заполненное бесцветной прозрачной жидкостью. Глубина ее в среднем 3 миллиметра. Задней стенкой передней камеры является радужная оболочка (радужка), которая отвечает за цвет глаз (если цвет голубой - значит, в ней мало пигментных клеток, если карий - много). В центре радужки находится круглое отверстие - зрачок .

[Увеличение внутриглазного давления приводит к глаукоме]

Зрачок

При осмотре глаза зрачок нам кажется черным. Благодаря мышцам в радужной оболочке, зрачок может изменять свою ширину: сужаться на свету и расширяться в темноте. Это как бы диафрагма фотоаппарата , которая автоматически суживается и ограждает глаз от поступления большого количества света при ярком освещении и расширяется при пониженном освещении, помогая глазу улавливать даже слабые световые лучи. (Опыт: посветить фонарем одному из учащихся в глаза. Что при этом происходит)

Хрусталик

После прохождения через зрачок луч света попадает на хрусталик. Его легко себе представить - это чечевицеобразное тело, напоминающее обычную лупу . Свет может свободно проходить через хрусталик, но при этом он преломляется так же, как по законам физики преломляется световой луч, проходящий через призму, т. е. отклоняется к основанию. Хрусталик обладает чрезвычайно интересной особенностью: с помощью связок и мышц вокруг он может изменять свою кривизну , что в свою очередь изменяет степень преломления. Это свойство хрусталика изменять свою кривизну очень важно для зрительного акта. Благодаря этому мы может четко видеть разноудаленные предметы. Эта способность называется аккомодацией глаза. Аккомодация – это способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза.
Аккомодация происходит путем изменения кривизны поверхностей хрусталика.

(Опыт с рамкой и марлей или с дыркой в листе бумаги). Нормальный глаз способен точно фокусировать свет от объектов, находящихся на расстоянии от 25 см. до бесконечности. Преломление света происходит при переходе его из одной среды в другую, имеющую иной коэффициент преломления (изучает физика), в частности на границе воздух – роговица и у поверхностей хрусталика. (Стакан с ложкой в воде).

В связи с этим вопрос, как вы считаете почему вредно читать лежа, в транспорте?

(Книгу держат в руках, опора отсутствует, поэтому текст все время меняет положение. Он то приближается к глазам, то удаляется от них, вызывая перенапряжение ресничной мышцы, изменяющей кривизну хрусталика. Кроме того, часть страницы то попадает в тень, то оказывается освещенной слишком ярко, от этого перенапрягаются гладкие мышцы радужной оболочки. Но более всего страдает нервная система, ведь регуляция ширины зрачка и кривизны хрусталика осуществляется средним мозгом. Все это может привести к ухудшению зрения.

За хрусталиком расположено стекловидное тело 6 , представляющее собой бесцветную студенистую массу. Задняя часть склеры - глазное дно - покрыто сетчатой оболочкой (сетчаткой ) 7 . Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.
Как возникают и воспринимаются глазом изображения различных предметов?
, преломляясь в оптической системе глаза , которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

    Изображение предмета, возникающее на сетчатке глаза, является перевернутым . Первым, кто это доказал, построив ход лучей в системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596-1650) взял глаз быка и, соскоблив с его задней непрозрачный слой, поместил в отверстии, проделанном в оконном стекле. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.
    Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757-1827) очень верно подметил:
    Посредством глаза, а не глазом
    Смотреть на мир умеет разум.

    В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.
    Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.
    ИЛЛЮЗИИ. Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии - наблюдаемый предмет нам кажется не таким, каков он есть на самом деле.

Ошибки (иллюзии) – это искаженные, ошибочные восприятия . Они обнаруживаются в деятельности различных анализаторов. В наибольшей степени известны зрительные иллюзии.

Известно, что далекие предметы представляются маленькими, параллельные рельсы – сходятся к горизонту, а одинаковые дома и деревья кажутся все ниже и ниже и где-то у горизонта сливаются с землей.

Иллюзии связанные с явлением контраста. Белые фигуры на черном поле кажутся светлее. В безлунную ночь звезды выглядят ярче.

Иллюзии используются в повседневной жизни. Так платье с продольными полосами «суживает» фигуру, платье с поперечным полосами «расширяет». Комната оклеенная синими обоями кажется более просторной, чем та же комната, оклеенная красными обоями.

Мы рассматриваем лишь некоторые иллюзии. На самом деле их значительно больше.

Опыт с ладонью (показать фото вызывающие иллюзии)

Но если наши восприятия могут быть ошибочными, можно ли утверждать, что мы верно отражаем явления нашего мира?

Иллюзии это не правило, а исключение . Если бы органы чувств давали неверное представление о действительности, живые организмы были бы уничтожены естественным отбором. В норме все анализаторы работают согласованно и проверяют друг друга в практике. Практика опровергает ошибку.

Стекловидное тело

После хрусталика свет проходит через стекловидное тело , заполняющее всю полость глазного яблока. Стекловидное тело состоит из тонких волокон, между которыми находится бесцветная прозрачная жидкость, обладающая большой вязкостью; эта жидкость напоминает расплавленное стекло. Отсюда и произошло его название - стекловидное тело. Участвует во внутриглазном обмене веществ.

Сетчатка

Сетчатка - внутренняя оболочка глаза – светочувствительный аппарат глаза. Фоторецепторы в сетчатке делятся на два вида: колбочки и палочки . В этих клетках происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении (сумеречное и черно-белое зрение), также они отвечают за периферическое зрение .

Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное и цветное зрение ). Наибольшее скопление колбочек находится в желтом пятне (о нем ниже), отвечающем за самую высокую остроту зрения.

(Опыт с цветными карандашами)

Чтобы быстрее :

    НОЧЬЮ удобнее ходить с ПАЛОЧКОЙ.

    ДНЕМ лаборанты работают с КОЛБОЧКАМИ.

Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

[Сетчатка повреждается при сахарном диабете, артериальной гипертензии и других заболеваниях]

Желтое пятно

Желтое пятно является крошечной, желтоватой областью возле центральной ямки (центра сетчатки) и находится рядом с оптической осью глаза. Это область наибольшей остроты зрения, тот самый «центр зрения», который мы обычно наводим на предмет.

Обратите внимание на желтое и слепое пятно .

Зрительный нерв и мозг

Зрительный нерв проходит от каждого глаза в полость черепа. Здесь зрительные волокна проделывают длинный и сложный путь (с перекрестами ) и в конечном итоге заканчиваются в затылочной части коры головного мозга. Эта область является высшим зрительным центром , в котором и воссоздается зрительный образ, точно соответствующий рассматриваемому предмету.

Слепое пятно

Место выхода из глаза зрительного нерва называется слепым пятном . Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. Почему же мы не замечаем отсутствующего куска картинки? Ответ прост. Мы смотрим двумя глазами, поэтому информацию для области слепого пятна мозг получает от второго глаза. Мозг в любом случае “достраивает” картинку так, что мы не видим дефектов.

Слепое пятно глаза открыто французским физиком Эдмом Мариоттом в 1668 г. (помните школьный закон Бойля-Мариотта для идеального газа?) Он использовал свое открытие для оригинальной забавы придворных короля Людовика XIV . Мариотт помещал двух зрителей друг напротив друга и просил их рассматривать одним глазом некоторую точку сбоку, тогда каждому казалось, что у его визави нет головы. Голова попадала в сектор слепого пятна смотрящего глаза.

Попробуйте найти у себя “слепое пятно” и вы.

    Закройте левый глаз и посмотрите на букву “О” на расстоянии 30-50 см . Буква “Х” исчезнет.

    Закройте правый глаз и посмотрите на “Х”. Исчезнет буква “О”.

    Приближая глаза к монитору и отдаляя его, вы сможете наблюдать исчезновение и появление соответствующей буквы, проекция которой попадет на область слепого пятна.

ФИЗКУЛЬТМИНУТКА

Ваши глаза немного утомились. Крепко зажмурьте газа и посчитайте до 5, затем откройте их и посчитайте до 5 снова. Повторите 5-6 раз. Это упражнение снимает усталость, укрепляет мышцы век, способствуют улучшению кровообращения и расслаблению мышц глаз.

Ну вот, наши глаза отдохнули, и мы переходим к следующему этапу урока.

    Дефекты зрения.

У человека, как и у других позвоночных зрение обеспечивается двумя глазами. Глаз как биологическое оптическое устройство проецирует изображение на сетчатке, там предварительно обрабатывает его и передаёт в мозг, который окончательно интерпретирует содержание зрительного образа, в соответствии с психологическими установками наблюдателя и его жизненным опытом. Благодаря аккомодации, изображение рассматриваемых предметов получается, как раз на сетчатке глаза. Это выполняется, если глаз нормальный. Глаз называется нормальным, если он в ненапряжённом состоянии собирает параллельные лучи в точке, лежащей на сетчатке. Наиболее распространены два недостатка глаза – близорукость и дальнозоркость.

Потеря зрения и дефекты зрения вызывают перестройку всех систем организма, тем самым формируя у человека особое восприятие и мироощущение.

Близорукость – дефект зрения, при котором человек четко видит объекты вблизи, в то время как далекие предметы кажутся размытыми. При близорукости, образ далеко находящегося предмета формируется перед сетчаткой, а не на самой сетчатке. Следовательно, близорукий человек при этом хорошо видит вблизи, но плохо видит объекты вдали.

Изображение фокусируется перед сетчаткой

Близоруким называется такой глаз, у которого фокус при спокойном состоянии глазной мышцы лежит внутри глаза. Близорукость может быть обусловлена большим удалением сетчатки от хрусталика по сравнению с нормальным глазом.

Если предмет расположен на расстоянии 25 см от близорукого глаза, то изображение предмета получится не на сетчатке, а ближе к хрусталику, впереди сетчатки. Чтобы изображение оказалось на сетчатке, нужно приблизить предмет к глазу. Поэтому у близорукого глаза расстояние наилучшего видения меньше 25 см.

Коррекция близорукости

Этот дефект может быть исправлен с помощью вогнутых контактных линз или очков. Вогнутая линза соответствующей мощности или фокусному расстоянию и в состоянии перенести образ объекта обратно на сетчатку глаза.

Дальнозоркость – это общее название для дефектов зрения, при которых человек видит вблизи предметы расплывчато, с затуманенным зрением, а удаленные объекты видятся хорошо. В этом случае изображение также, как и при близорукости формируется за сетчаткой.

Изображение фокусируется за сетчаткой

Дальнозорким называется глаз, у которого фокус при спокойном состоянии глазной мышцы лежит за сетчаткой. Дальнозоркость может быть обусловлена тем, что сетчатка расположена ближе к хрусталику по сравнению с нормальным глазом. Изображение предмета получается за сетчаткой такого глаза. Если предмет удалить от глаза, то изображение попадает на сетчатку.

Коррекция дальнозоркости

Этот недостаток может быть исправлен с помощью выпуклых контактных линз или очков соответствующих фокусным расстояниям.

Итак, для исправления близорукости применяют очки с вогнутыми, рассеивающими линзами. Если, например, человек носит очки, оптическая сила которых равна -0,5 дптр или -2 дптр, -3,5 дптр, то значит он близорукий.

В очках для дальнозорких глаз используют выпуклые, собирающие линзы. Такие очки могут иметь, например, оптическую силу +0,5 дптр, +3 дптр, +4,25 дптр.

Люди и животные имеют высокоразвитые органы чувств. Для того, чтобы полученная информация хорошо передавалась и обрабатывалась, необходим совершенный аппарат нервов. Во многих случаях техника заимствует определенные принципы действия нервной системы. Поэтому для создания точных инструментов и аппаратов приходит на помощь природа.

Вывод: соблюдение гигиены зрения – важнейший фактор сохранения функций глаза и необходимое условие поддержания нормального состояния центральной нервной системы.

    Закрепление изученного материала.

1. Тест для самопроверки

1. Структура, относящаяся к вспомогательной системе глаза:

А. Роговица
Б. Веко
В. Хрусталик
Г. Радужка

2. Структура, относящаяся к оптической системе глаза:

А. Роговица
Б. Сосудистая оболочка
В. Сетчатка
Г. Белочная оболочка

3. Двояковыпуклая эластичная прозрачная линза, окруженная ресничной мышцей:

А. Хрусталик
Б. Зрачок
В. Радужка
Г. Стекловидное тело

4. Функция сетчатки:

А. Преломление лучей света
Б. Питание глаза
В. Восприятие света, преобразование его в нервные импульсы
Г. Защита глаз

5. Цвет глазам придает:

А. Склера
Б. Хрусталик
В. Радужная оболочка
Г. Сетчатка

6. Прозрачная передняя часть белочной оболочки:

А. Желтое пятно
Б. Радужка
В. Сетчатка
Г. Роговица

7. Место выхода зрительного нерва:

А. Белое пятно
Б. желтое пятно
В. Темная область
Г. Слепое пятно

8. Поступающую внутрь глаза силу света регулирует:

А. Веко
Б. Сетчатка
В. Хрусталик
Г. Зрачок

9. Особое вещество пурпурного цвета, содержащийся в палочках, называется:

А. Родопсин
Б. Опсин
В. Йодопсин
Г. Ретинен

10. Укажите правильную последовательность прохождения света от роговицы до сетчатки:

А. Роговица, стекловидное тело, хрусталик, сетчатка
Б. Роговица, стекловидное тело, зрачок, хрусталик, сетчатка
В. Роговица, зрачок, хрусталик, стекловидное тело, сетчатка
Г. Роговица, зрачок, хрусталик, сетчатка

    Задание на дом :

    § 49, 50.

    Заполнить таблицу «Строение и функции органа зрения».

Анализатор – это не просто ухо или глаз. Он представляет собой совокупность нервных структур, включающих в себя периферический, воспринимающий аппарат (рецепторы), трансформирующий энергию раздражения в специфический процесс возбуждения; проводниковую часть, представленную периферическими нервами и проводниковыми центрами, она осуществляет передачу возникшего возбуждения в кору головного мозга; центральную часть – нервные центры, расположенные в коре головного мозга, анализирующие поступившую информацию и формирующие соответствующее ощущение, после которого вырабатывается определенная тактика поведения организма. С помощью анализаторов мы объективно воспринимаем внешний мир таким, какой он есть.

1. Понятие об анализаторах и их роль в познании окружающего мира.



4. Зрительный анализатор.
5. Гигиена кожи.
6. Типы кожи и основы ухода за кожей.
7. Анализатор кожи.
8. Список литертуры.

Файлы: 1 файл

ПОВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ СОЦИАЛЬНО-ГУМАНИТАРНАЯ АКАДЕМИЯ

РЕФЕРАТ СТУДЕНТА 1 КУРСА
ПО АНАТОМИИ и ВОЗРАСТНОЙ ФИЗИОЛОГИИ

«Анализаторы. Гигиена кожи, слухового и зрительного анализаторов».
факультета психологии

учреждения образования ПГСГА

Преподаватель: Гордиевский А.Ю.

Выполнила: Холунова Татьяна

2013г.

Тема: «Анализаторы. Гигиена кожи, слухового и зрительного анализаторов».


1. Понятие об анализаторах и их роль в познании окружающего мира.

2. Чувствительность слухового анализатора.

3. Гигиена органа слуха ребенка.

4. Зрительный анализатор.

5. Гигиена кожи.

6. Типы кожи и основы ухода за кожей.

7. Анализатор кожи.

8. Список литертуры.

1. Понятие об анализаторах и их роль в познании окружающего мира

Организм и внешний мир – это единое целое. Восприятие окружающей нас среды происходит с помощью органов чувств или анализаторов. Еще Аристотелем были описаны пять основных чувств: зрение, слух, вкус, обоняние и осязание.

Анализатор – это не просто ухо или глаз. Он представляет собой совокупность нервных структур, включающих в себя периферический, воспринимающий аппарат (рецепторы), трансформирующий энергию раздражения в специфический процесс возбуждения; проводниковую часть, представленную периферическими нервами и проводниковыми центрами, она осуществляет передачу возникшего возбуждения в кору головного мозга; центральную часть – нервные центры, расположенные в коре головного мозга, анализирующие поступившую информацию и формирующие соответствующее ощущение, после которого вырабатывается определенная тактика поведения организма. С помощью анализаторов мы объективно воспринимаем внешний мир таким, какой он есть. Это материалистическое понимание вопроса. Напротив, идеалистическая концепция теории познания мира выдвинута немецким физиологом И.Мюллером, который сформулировал закон специфической энергии. Последняя, по мнению И.Мюллера, заложена и формируется в наших органах чувств и эту энергию мы же и воспринимаем в виде определенных ощущений. Но эта теория не верна, так как она базируется на действии неадекватного для данного анализатора раздражения. Интенсивность стимула характеризуется порогом ощущения (восприятия). Абсолютный порог ощущения – это минимальная интенсивность стимула, которая создает соответствующее чувство. Дифференциальный порог – это минимальное различие интенсивностей, которое воспринимается субъектом. Это означает, что анализаторы способны дать количественную оценку прироста ощущения в сторону его увеличения или уменьшения. Так, человек может отличить яркий свет от менее яркого, дать оценку звуку по его высоте, тону и громкости. Периферическая часть анализатора представлена либо специальными рецепторами (сосочки языка, обонятельные волосковые клетки), либо сложно устроенным органом (глаз, ухо). Зрительный анализатор обеспечивает восприятие и анализ световых раздражений, и формирование зрительных образов. Корковый отдел зрительного анализатора расположен в затылочных долях коры больших полушарий головного мозга. Зрительный анализатор участвует в осуществлении письменной речи. Слуховой анализатор обеспечивает восприятие и анализ звуковых раздражений. Корковый отдел слухового анализатора расположен в височной области коры больших полушарий. С помощью слухового анализатора осуществляется устная речь. Речедвигательный анализатор обеспечивает восприятие и анализ информации, поступающей от органов речи. Корковый отдел речедвигательного анализатора расположен в постцентральной извилине коры больших полушарий. С помощью обратных импульсов, идущих от коры головного мозга к двигательным нервным окончаниям в мышцах органов дыхания и артикуляции, регулируется деятельность речевого аппарата.

2. Чувствительность слухового анализатора

Ухо человека может воспринимать диапазон звуковых частот в довольно широких пределах: от 16 до 20 000 Гц. Звуки частот ниже 16 Гц называют инфразвуками, а выше 20 000 Гц – ультразвуками. Каждая частота воспринимается определенными участками слуховых рецепторов, которые реагируют на определенное звучание. Наибольшая чувствительность слухового анализатора наблюдается в области средних частот (от 1000 до 4000 Гц). В речи используются звуки в пределах 150 – 2500 Гц. Слуховые косточки образуют систему рычагов, с помощью которых улучшается передача звуковых колебаний из воздушной среды слухового прохода к перилимфе внутреннего уха. Разница в величине площади основания стремени (малая) и площади барабанной перепонки (большая), а также в специальном способе сочленения косточек, действующих наподобие рычагов; давление на мембране овального окна увеличивается в 20 раз и более, чем на барабанной перепонке, что способствует усилению звука. Кроме того, система слуховых косточек способна изменять силу высоких звуковых давлений. Как только давление звуковой волны приближается к 110 – 120 дБ, существенно меняется характер движения косточек, снижается давление стремени на круглое окно внутреннего уха, предохраняет слуховой рецепторный аппарат от длительных звуковых перегрузок. Это изменение давления достигается сокращением мышц среднего уха (мышцы молоточка и стремени) и уменьшается амплитуды колебания стремени. Слуховой анализатор способен к адаптации. Длительное действие звуков приводит к снижению чувствительности слухового анализатора (адаптация к звуку), а отсутствие звуков – к ее повышению (адаптация к тишине). С помощью слухового анализатора можно относительно точно определить расстояние до источника звука. Наиболее точная оценка удаленности источника звука происходит на расстоянии около 3 м. направление звука определяется благодаря бинауральному слуху, ухо, которое ближе к источнику звука, воспринимает его раньше и, следовательно, более интенсивно по звучанию. При этом определяется и время задержки на пути к другому уху. Известно, что пороги слухового анализатора не строго постоянны и колеблются в значительных пределах у человека в зависимости от функционального состояния организма и действия факторов окружающей среды.

Различают два вида передачи звуковых колебаний – воздушную и костную проводимость звука. При воздушной проводимости звука звуковые волны улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку, а затем через систему слуховых косточек перилимфе и эндолимфе. Человек при воздушной проводимости способен воспринимать звуки от 16 до 20 000 Гц. Костная проводимость звука осуществляется через кости черепа, которые также обладают звукопроводимостью. Воздушная проводимость звука выражена лучше, чем костная.

3. Гигиена органа слуха ребенка

Один из навыков личной гигиены - следить за опрятностью своего лица, в частности ушей - также должен прививаться ребенку по возможности раньше. Мыть уши, следить за чистотой их, удалять выделения, если таковые имеются.

У ребенка с гноетечением из уха, даже, казалось бы, самым незначительным, нередко развивается воспаление наружного слухового прохода. Об экземе, причинами которой нередко являются гнойный средний отит, а также механические, термические и химические повреждения, вызванные в процессе очищения слухового прохода. Самое главное при этом - соблюдение гигиены уха: нужно очищать его от гноя, осушать в случае закапывания капель при среднем гнойном отите, смазывать слуховой проход вазелиновым маслом, трещины - настойкой йода. Обычно врачи назначают сухое тепло, синий свет. Профилактика заболевания в основном заключается в гигиеническом содержании уха при гнойном среднем отите.

Чистить уши нужно 1 раз в неделю. Предварительно закапать в каждое ухо на 5 минут перекись водорода 3% раствор. Серные массы размягчаются и превращаются в пену, их легко удалить. При "сухой" чистке велика опасность протолкнуть часть серных масс в глубь наружного слухового прохода, к барабанной перепонке (так формируется серная пробка).

Прокалывать мочку уха нужно только в косметических кабинетах, чтобы не вызвать инфицирования ушной раковины и ее воспаления.

Систематическое пребывание в шумной обстановке или кратковременное, но весьма интенсивное воздействие звука может привести к тугоухости. Оберегайте уши от слишком громких звуков. Ученые выяснили, что продолжительное воздействие громкого шума вредит слуху. Сильные, резкие звуки ведут к разрыву барабанной перепонки, а постоянные громкие шумы вызывают потерю эластичности барабанной перепонки.

В заключение необходимо подчеркнуть, что гигиеническое воспитание малыша в детском саду и дома, конечно же, тесно связано с другими видами воспитания - умственным, трудовым, эстетическим, нравственным, т. е. с воспитанием личности.

Важно соблюдать принципы систематичности, постепенности и последовательности формирования культурно-гигиенических навыков с учетом возраста и индивидуальных особенностей малыша.

4. Зрительный анализатор

ОРГАН ЗРЕНИЯ (ГЛАЗ) - воспринимающий отдел зрительного анализатора, служит для восприятия световых раздражений.

Глаз находится в глазнице черепа. Различают передний и задний полюсы глаза. Глаз включает в себя глазное яблока и вспомогательный аппарат.

Глазное яблоко состоит из ядра и трех оболочек: наружной - фиброзной, средней - сосудистой, внутренней - сетчатой.

ОБОЛОЧКИ ГЛАЗНОГО ЯБЛОКА.

Фиброзная оболочка представлена двумя отделами. Передний отдел образует бессосудистая, прозрачная и сильно изогнутая роговица; задний -белочная оболочка (склера, напоминает своим цветом белок вареного куриного яйца). На границе между роговицей и белочной оболочкой проходит венозный синус, по которому из глаза оттекает венозная кровь и лимфа. Эпителий роговицы переходит здесь в конъюнктиву, выстилающую переднюю часть белочной оболочки.

За склерой находится сосудистая оболочка, которая состоит из трех различных по структуре и функциям частей: собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка рыхло соединяется с белочной, и между ними располагаются лимфатические щели. Она пронизана большим количеством сосудов. На внутренней поверхности имеет черный пигмент, поглощающий свет.

Ресничное тело, имеет вид валика. Вдается внутрь глазного яблока там, где белочная оболочка переходит в роговицу. Задний край тела переходит в собственно сосудистую оболочку, а от переднего отходит до 70 ресничных отростков. От них берут начало упругие тонкие волоконца, которые образуют поддерживающий хрусталик аппарат, или ресничный поясок.

В передней части глаза сосудистая оболочка переходит в радужную. Цвет радужки определяется количеством красящего пигмента (от голубого до темно - коричневого), который определяет цвет глаз. Между роговицей и радужной оболочкой находится передняя камера глаза, заполненная водянистой влагой.

В середине радужной оболочки находится круглое отверстие - зрачок. Необходим для регулирования потока света, поступающего в глаз, т.е. благодаря клеткам гладкой мышечной ткани зрачок может расширяться и суживаться, пропуская количество света, необходимое для рассмотрения предмета (рефлекторно суживается при ярком свете и расширяется в темноте за счет мышц радужки).

Мышечные волокна радужки имеют двойное направление. По радиусам расположены волокна мышцы, расширяющей зрачок, вокруг зрачкового края радужки находятся круговые волокна мышцы, суживающей зрачок.

Сетчатая оболочка, или сетчатка - приле жит к стекловидному телу, состоит из двух частей:

1. задняя - зрительная - светочувствительна, это тонкий и очень нежный слой клеток - зрительных рецепторов, являющихся периферическим отделом зрительного анализатора.

2. передняя - ресничная и радужинная, не содержит светочувствительных клеток. Границей между ними является зубчатая кайма, которая расположена на уровне перехода собственно сосудистой оболочки в ресничный кружок.

Место выхода из глазного яблока зрительного нерва называется - диск (слепое пятно), здесь нет зрительных рецепторов. Кроме того, в области диска в сетчатку вступает питающая ее артерия и выходит вена. Оба сосуда проходят внутри зрительного нерва.

Зрительная часть сетчатки имеет сложное строение, она состоит из 10 микроскопических слоев (таблица). Самым наружным слоем, прилегающим к сосудистой оболочке, служит пигментный эпителий. За ним располагается слой нейроэпителия, содержащий нейрорецепторные клетки.

Рецепторы сетчатки - клетки в форме палочек (125 млн.) и колбочек (6,5 млн). Они примыкают к черной сосудистой оболочке. Ее волоконца окружают каждую из этих клеток с боков и сзади, образуя черный футляр, обращенный открытой стороной к свету.

Палочки - рецепторы сумеречного света, имеют большую чувствительность к лучам всего видимого света. Передают только черно-белое изображение. Каждая палочка состоит из наружного и внутреннего сегментов, соединенных между собой связующим отделом, который представляет собой видоизмененную ресничку.

В самой наружной части внутреннего сегмента залегает базальное тельце с базальным корешком, вблизи которых расположены центриоли. Наружный сегмент - светочувствительный - образован сдвоенными мембранными дисками, являющимися складками плазматической мембраны, в которую встроен зрительный пурпур - родопсин. Внутренний сегмент состоит из двух частей: эллипсоидной (заполнена митохондриями) и миоидной (рибосомы, комплекс Гольджи). От тела клетки отходит отросток (аксон), заканчивающийся расщепляющимся синоптическим тельцем, образующим лентовидные синапсы.

Слой сетчатки

Пигментный

Фотосенсорный - палочки и колбочки

Наружная пограничная мембрана

Наружный ядерный

Наружный сетчатый

Внутренний ядерный

Внутренний сетчатый

Ганглионарный (проходят кровеносные сосуды)

Слой нервных волокон

Внутренняя пограничная мембрана


Колбочки обладают меньшей светочувствительностью и раздражаются только ярким светом и отвечают за цветное зрение. Существует 3 вида колбочек, чувствительных только к синему, зеленому и красному свету. Они сосредоточены преимущественно в центральной части сетчатки, в так называемом желтом пятне (место наилучшего видения, находится на расстоянии около 4 мм от диска). В остальной части сетчатки находятся и колбочки, и палочки, однако по периферии преобладают палочки.

Колбочки отличаются от палочек большей величиной и характером дисков. В дистальной части наружного сегмента колбочек впячивания плазматической мембраны образуют полудиски, которые сохраняют связь с мембраной, в проксимальной части наружного сегмента диски аналогичны дискам палочек. В эллипсоидном внутреннем сегменте расположены удлиненные митохондрии. Синтезируемый белок - иодопсин - непрерывно транспортируется в наружный сегмент, где встраивается во все диски. В расширенной базальной части колбочковой клетки залегает сферическое ядро. От тела клетки отходит аксон, оканчивающийся широкой ножкой, образующей синапсы.

Перед палочками и колбочками располагаются нервные клетки, которые воспринимают и обрабатывают информацию, полученную от зрительных рецепторов. Аксоны нейронов образуют зрительный нерв.

ЯДРО ГЛАЗНОГО ЯБЛОКА.

За зрачком располагается хрусталик, напоминающий двояковыпуклую линзу.

Хрусталик лишен сосудов и нервов, совершенно прозрачен и покрыт бесструктурной прозрачной сумкой. Хрусталик укреплен ресничным пояском

Между хрусталиком и радужкой находится задняя камера глаза, заполненная водянистой влагой. Она выделяется кровеносными сосудами ресничных отростков и радужки, слабо преломляет свет, ее отток осуществляется через венозный синус.

С помощью окружающих его гладких мышц, образующих ресничное тело, хрусталик может менять форму: становиться то более выпуклым, то более плоским. Хрусталик формирует на задней внутренней стенке глаза сетчатой оболочке или сетчатке уменьшенное перевернутое изображение.

Полость глазного яблока заполнена прозрачным веществом - стекловидным телом. Это прозрачная бессосудистая студенистая масса, заполняющая полость глаза между хрусталиком и сетчаткой, участвует в поддержании внутриглазного давления и формы глаза, плотно соединено с сетчаткой.

ВСПОМОГАТЕЛЬНЫЙ АППАРАТ ГЛАЗА.

К глазному яблоку проходят мышцы, которые могут перемещать его в разные стороны. Мышцы: четыре прямые (латеральная, медиальная, верхняя и нижняя) и две косые (верхняя и нижняя).

Спереди глаз защищен веками, ресницами и бровями. Внутренняя поверхность век выстлана оболочкой - конъюнктивой, которая продолжается на глазное яблоко, покрывая его свободную поверхность. Конъюнктивой ограничивается конъюнктивальный мешок, который содержит слезную жидкость, омывающую свободную поверхность глаза и обладающую бактерицидным свойством.

У внутреннего угла глаза между краями век образуется пространство - слезное озеро; на его дне лежит маленькое возвышение - слезное мясцо. На крае обоих век в этом месте находится по небольшому отверстию - слезной точке; это начало слезного канальца.

В верхнем углу глаза со стороны щеки находится слезная железа. При опускании подвижного верхнего века железа выделяет слезы, которые увлажняют, промывают и согревают глаз. Слезная жидкость от наружного верхнего угла глаза идет в нижний внутренний угол и отсюда попадает в слезный канал, направляются под кожей век к слезному мешку, расположенному на медиальной стенке глазницы, и впадают в него. Слезный мешок, суживаясь книзу, переходит в слезно-носовой проток, который выводит избыток слез в носовую полость. Слезная жидкость содержит бактерицидное вещество - лизоцим, облегчает движение век, уменьшая трение.

Жировое тело заполняет пространство между стенками глазницы и глазным яблоком с его мышцами. Жировое тело образует мягкую и эластичную обкладку глазного яблока.

Фасция отделяет жировое тело от глазного яблока; между ними остается щелевидное пространство, которое обеспечивает подвижность глазного яблока.

Проводниковый отдел начинается в сетчатке. Нейриты ее ганглиозных клеток складываются в зрительные нервы, которые войдя через зрительные каналы в полость черепа, образуют перекрест. После перекреста каждый нерв, называемый теперь зрительным путем, огибает ножку мозга и разделяется на два корешка. Один из них заканчивается в верхнем двухолмии. Его волокна идут к ниже расположенным эффекторным ядрам ствола и к подушке зрительного бугра. Другой корешок направляется к латеральному коленчатому телу. В подушке и латеральном коленчатом теле зрительные импульсы переключаются на следующий нейрон, волокна которого в составе зрительной лучистости идут: к коре затылочной области больших полушарий (центральный отдел).

Зрительные пути устроены так, что левая часть поля зрения от обоих глаз попадает в правое полушарие коры большого мозга, а правая часть поля зрения - в левое. Если изображения от правого и левого глаза попадают в соответствующие мозговые центры, то они создают единое объемное изображение. Зрение двумя глазами называют бинокулярным зрением, которое обеспечивает четкое объемное восприятие предмета и его местоположения в пространстве

5.Гигиена кожи

В цифровом анализаторе кожи реализован самый современный и высокоточный метод, неинвазивной оценки состояния кожи человека, - метод биоимпеданса "Bioelectric Impedance Analysis BIA, Skin Analyzer Monitor".

Неблагоприятная экология, помещения c кондиционированным воздухом, плохие погодные условия (метель, град, дождь), бассейн с некачественной водой, пища и напитки, состояние здоровья и образ жизни, стрессы на работе, смена циклов в организме, просроченная косметика - все это влияет на состояние кожи. Сохранить молодость и стать еще прекраснее, Вам поможет Анализатор кожи. Этот простой мини-компьютер позволит проанализировать не только внешний вид, но и внутреннее состояние, определить увлажненность кожи, жирность и мягкость. С помощью этих данных Вы сможете подобрать индивидуальный подходящий Вам уход за кожей.

Время получения данных о состоянии кожи составляет не более 10 секунд. Анализатор кожи является мощным инструментом для оценки эффективности и результата воздействия косметических средств и выбора подходящих. Является незаменимым помощником для тех, чья кожа нуждается в постоянной специальной заботе и уходе: новорожденных младенцев, людей, страдающих сахарным диабетом и многих других.

Важным положительным качеством анализатора является абсолютная безопасность, информативность, точность результатов, надежность и простота в работе. Анализатор позволяет оценить такие показатели состояния кожи, как влажность, сухость, жирность, тургор и состояние эпителия кожи. Все показатели выводятся на ЖК-дисплей в цифровом и в формате гисто- и пиктограмм.

Анализатор кожи подходит как для профессиональных консультаций по уходу за кожей, так и для личного использования. Это важный инструмент для личной заботы о коже и будет полезен косметологам. Изящная форма, максимальная портативность, малые размеры и вес, легкость и удобство в использовании делает этот прибор незаменимым в арсенале средств для красоты и молодости кожи.

Обезвоженной считается кожа, которая содержит недостаточное количество воды и не может удерживать влагу в верхнем слое эпидермиса. Обезвоженная кожа может быть не только у сухого типа кожи, но и у кожи с нормальной и повышенной функцией сальных желез! Под влиянием разных факторов вода, поступающая в клетки эпидермиса, быстро испаряется и не успевает донести полезные элементы в кожу. Из-за недостатка влаги кожа теряет эластичность и появляются морщины. С помощью Анализатора Кожи можно правильно оценить состояние кожи и подобрать косметические средства и приборы для здоровья.

Процесс обучения проходит через углубление в изучаемый материал,
затем через углубление в самого себя.

И.Ф. Гербарт

Цели:

Воспитательная цель: социализация учащихся в учебной ситуации, развитие чувства толерантности друг к другу и самоуважения.

Развивающая цель: Формирование элементов естественнонаучного мировоззрения учащихся знаньевыми средствами основ анатомии и физиологии, развитие коммуникативных умений через формирование навыков работы в мини-группах и умения анализировать свою деятельность

Комплексная обучающая (дидактическая) цель (КДЦ): – овладение содержанием темы «Анализаторы». Формирование у учащихся понимания связи между структурой и функциями конструктов органов и организма на примере анализаторов.

Частные дидактические цели (ЧДЦ):

  1. Развитие навыков узнавания структур глаза.
  2. Формирование готовности использовать знания и умения, полученные на уроке.
  3. Расширение представлений учащихся о функционально-структурных связях зрительного анализатора.

Учащиеся должны знать: терминологию по теме «Зрительный анализатор», основные структуры глаза и их работу.

Учащиеся должны уметь:

  1. Находить на предложенном дидактическом материале структуры зрительного анализатора,
  2. Описывать анатомию и физиологию анализаторов.
  3. Обосновывать необходимость валеологического подхода к себе и окружающим людям.
  4. Иметь навыки здоровьесберегающего поведения.

Формулируемая область понимания Структурно-функциональный анализ глаза и зрительного анализатора на пропедевческом уровне.

Педагогическая стратегия: «Для того чтобы переваривать знания, надо поглощать их с аппетитом» (Анатоль Франц)

Педагогическая тактика: Индивидуализация фронтального обучения средствами дифференциации знаний на стадии объяснения нового материала.

Ведущие формы урока: эвристическая беседа, работа с цифровым микроскопом, анализ материалов презентации темы, рефлексия в рамках командной деятельности.

Педагогическая технологи: личностно-ориентированное обучение.

Оборудование урока: Мультимедийный проектор, цифровой микроскоп QX3+ CM, препараты высушенных бычьих глаз.

Формы контроля: Самоконтроль, взаимоконтроль и экспертный контроль.

Краткое содержание урока

Часть 1. Постановка проблемы: Значение зрительного анализатора (слайды № 1-2)

Для решения задач данного урока необходимо формирование у детей понимания руководящей роли зрительного анализатора. Поэтому учениикам предлагается работа с бегущей полилингвальной строкой. Учащиеся создают собственный список слов и выражений о зрении и глазах. Функциональный вклад данной части урока можно охарактеризовать как эмоционально-интеллектуальное погружение детей в тему.

Часть 2. Объяснение и закрепление нового материала: Строение глаза. (слайды № 3, 4, 5, 6)

Пропедевческое изучение строения глаза осуществляется в 6-7 классах. Поэтому главной сложностью в изложении темы в 8 классе является «всезнайство» детей, которое можно избежать обращением к анализу «бытового знания» с повторением и углублением изученного ранее. Сочетая эвристическую беседу с командной работой в интеллектуальных парах, учитель подводит учащихся к демонстрационной лабораторной работе.

Часть 3. Демонстрационная лабораторная работа: Строение глаз млекопитающего. (слайд № 3)

Наиболее динамичной и поэтому запоминающейся формой сравнительного анализа структур является микроскопирование. Учебными ситуациями при этом является:

а) предъявление ученикам-демонстраторам узкоспециализированного задания в виде отдельных препаратов.
б) последовательное обсуждение в командах «картинок» цифрового микроскопирования.

Часть 4. Объяснение и закрепление нового материала: Главные преломляющие среды глаза и глазное дно. (слайды № 7, 8, 9, 10, 11, 12)

В данной части продолжаетсяосновная интрига урока: столкновение различных бытовых наблюдений и превращение их в научное знание. В этой же части урока вводятся новые сложные понятия, формирующие у детей понимание особенности цвето- и свето- восприятия человека. Поэтому 3 слайда из 6 посвящено обсуждению информации.

Часть 5. Объяснение и закрепление нового материала: Восприятие изображения. (слайды № 13-15)

Сложностьданной части определяется ее интегративностью. Обсуждение неожиданных последствий ассиметрии мозга для восприятия картины Мира методом следов позволяет детям наглядно оценить степень усвоения материала, причем неполнота, степень репродуктивности и креативности ответов может выражаться как в укорочении дорожки следов, так и в изменении цвета шага.

Демонстрационная лабораторная работа длится 10 минут. Учащиеся-демонстраторы и учащиеся-наблюдатели обсуждают препараты. А - внешний вид глаза, Во - внутреннее строение глаза, С – сетчатка

Часть 2 (продолжение). Объяснение и закрепление нового материала: Строение глаза. (Слайды № 5, 6)

Слайд № 13 Создание зрительного образа происходит в затылочной доле коры головного мозга. Очень важно как передается в мозг изображение, ведь мозг ассиметричен. Вспомните курицу. У нее не соединятся информация от двух половинок мозга, поэтому курица видит автономно каждым глазом. У человека правая часть сетчатки каждого глаза передает изображение в левое аналитическое полушарие, а левая часть сетчатки передает изображение в правое образное полушарие.

Слайд № 14 Особенности глаза женщины

В женском глазу больше палочек. Поэтому:

  1. Лучше развито периферийное зрение.
  2. Лучше видят в темноте.
  3. Воспринимают информации больше, чем мужчины в каждый момент времени
  4. Моментально фиксируют любое движение.
  5. Палочки работают на правое, конкретно- образное полушарие.

Слайд № 15 Особенности глаза мужчины

В мужском глазу больше колбочек.

На колбочки, приходится фокус глазного хрусталика. Поэтому:

  1. Лучше воспринимают цвета.
  2. Четче видят картинку.
  3. Концентрируют внимание на одном аспекте изображения, сводя все поле зрения к тоннелю.
  4. Колбочки работают на левое, абстрактное полушарие.

Часть 6. Рефлексия (слайды № 16, 17).Эти слайды не вошли в презентацию, представленную на Фестиваль

А) Ученики знакомит учащихся с фрагментом учебно-исследовательского проекта «Функциональная зависимость состояния глаза от режима дня школьника».

Гигиена глаз заключается главным образом в соблюдении режима дня, ночного отдыха (ночной сон не менее 8 часов), работы за компьютером (ученики 8-х классов могут работать за компьютером около 3 часов в день). Необходимо систематически делать упражнения для глаз.

  1. Пиши носом.
  2. Смотри сквозь.
  3. Двигай бровями.

Б) Учащиеся записывают главную, по их мнению, мысль урока в дневнике режима дня, обобщая тем самым собственный график сна и диаграммы суточной занятости.

Домашнее задание : по учебнику Н.И.Сонин, М.Р. Сапин Биология. Человек. М.Дрофа.

  1. Репродуктивное задание
стр. 73-75.
  • Креативное задание
  • стр.73-77, 79.
  • Общее задание
  • : Научи друзей и близких людей делать упражнения для глаз.

    Цель занятия : Познакомиться со строением зрительного анализатора, меха­низмом его функционирования, возрастными особенностями и гигие­ной.

    1. ХОД РАБОТЫ

    1. Рассмотрите строение зрительного анализатора, найдите его
    основные отделы: периферический, проводниковый и корковый (Атлас

    2. Ознакомьтесь с вспомогательным аппаратом глаза (верхнее и
    нижнее веки, коньюктива, слезный аппарат, двигательный аппарат).

    3. Рассмотрите и изучите оболочки глазного яблока; расположе-
    ние, строение, значение. Найдите желтое и слепое пятно (Атлас

    4. Рассмотрите и изучите строение ядра глазного яблока - опти­ческой системы глаза, пользуясь разборной моделью глаза и табли­цей (Атлас, С. 100)

    Зарисуйте строение глаза, обозначив все оболочки и элементы оптической системы (Атлас 2, С. 331).

    5. Найдите и рассмотрите строение проводникового отделе! (Атлас
    1, С. 100, Атлас 2, С. 332-338).

    6. Объясните механизм формирования зрительных ощущений.

    7. Понятие рефракции, виды рефракций. Зарисуйте схему хода
    лучей при различных типах рефракций (Атлас 2, С. 334) – ЛУЧШЕ ЭТУ СХЕМУ ПОМЕСТИТЬ СРАЗУ В МЕТОДИЧКУ

    8.Назовите возрастные особенности зрительного анализатора.

    9.Гигиена зрительного анализатора.

    10.Определить состояние некоторых зрительных функций: остроту зрения, пользуясь таблицей Головина-Сивцева; размеры слепого пятна

    2. Теоретический материал

    2.1. Понятие о зрительном диализаторе

    Зрительный анализатор - это сенсорная системе, включающая пе­риферический отдел с рецепторным аппаратом (глазное яблоко), проводящий отдел (афферентные нейроны, зрительные нервы и зри­тельные пути), корковый отдел, который представляет совокупность нейронов находящихся в затылочной доле (17,18,19 доля) коры боль-шик полушарий. С помощью зрительного анализатора осуществляется восприятие и анализ зрительных раздражителей, формирование зри­тельных ощущений, совокупность которых дает зрительный образ предметов. Благодаря зрительному анализатору в головной мозг пос­тупает 90% информации.

    2.2. Периферический отдел зрительного ана лизатора

    Периферический отдел зрительного анализатора -это орган зрения глаз. Он состоит из глазного яблока и вспомогательного аппарата. Глазное яблоко расположено в глазнице черепа. Вспомогательный ап­парат глаза включает защитные приспособления (брови, ресницы, ве­ки), слезный аппарат, двигательный аппарат (мышцы глаза).

    Веки это полулунные пластинки волокнистой соединительной тка-ни, снаружи они покрыты кожей, а изнутри слизистой оболочкой (коньюнктивой). Конъюнктива покрывает переднюю поверхность глазного яблока, кроме роговицы. Коньюктива ограничивает коньюктивальный мешок, в нем слезная жидкость, омывающая свободную поверхность глаза. Слезный аппарат состоит из слезной железы и слезовыводящих путей.


    Слезная железа расположена в верхне-наружной части глазницы. Выводные протоки ее (10-12) открываются в конъюктивальный мешок. Слезная жидкость предохраняет роговицу от высыхания и смывает с нее пылевые частицы. Она оттекает по слезным канальцам в слезный мешок, соединяющийся слезно-носовым протоком с носовой полостью. Двигательный аппарат глаза образован шестью мышцами. Они прик­реплены к глазному яблоку, начинаются от сухожильного конца, расположенного вокруг зрительного нерва. Прямые мышцы глаза: ла­теральная, медиальная верхняя и нижняя - вращают глазное яблоко вокруг фронтальных и сагиттальных осей, поворачивая его во внутрь и наружу, вверх, вниз. Верхняя косая мышца глаза, повора­чивая глазное яблоко, обращает зрачок вниз и кнаружи, нижняя косс1Я мышца глаза - вверх и кнаружи.

    Глазное яблоко состоит из оболочек и ядра. Оболочки: волокнис­тая (наружная), сосудистая (средняя), сетчатка (внутренняя).

    Волокнистая оболочка спереди образует прозрачную роговицу, которая переходит в белочную оболочку или склеру. Эта наружная оболочка защищает ядро и сохраняет форму глазного яблока. Сосу­дистая оболочка выстилает изнутри белочную, состоит из трех раз­личных по структуре и функциям частей: собственно сосудистой обо­лочки, ресничного тела, расположенного на уровне роговицы и ра­дужки (Атлас, стр. 100).

    Собственно сосудистая оболочка тонка, богата сосудами, содер­жит пигментные клетки, придающие ей темно-коричневый цвет.

    Ресничное тело, имеющее вид валика, вдается внутрь глазного яблока там, где белочная оболочка переходит в роговицу. Задний край тела переходит в собственно сосудистую оболочку, а от перед­него отходит до „70 ресничных отростков, от которых берут начало тонкие волоконца, другим своим концом прикрепляющиеся к капсуле хрусталика по экватору. В основе ресничного тела, кроме сосудов, содержатся гладкие мышечные волокна, составляющие ресничную мыш­цу.

    Радужная оболочка или радужка - .тонкая пластинка, она прик-репляется к ресничному телу. В центре ее - зрачок, просвет его изменяется мышцами, находящимися в радужке.

    Сетчатка выстилает сосудистую оболочку изнутри (Атлас, С. 100) она образует переднюю (меньшую) и заднюю (большую) части. Задняя часть состоит из двух слоев: пигментного, срастающего с сосудистой оболочкой и мозгового. В мозговом слое находятся све­точувствительные клетки: колбочки (6 млн) и палочки (125 млн) На­ибольшее количество колбочек в центральной ямке желтого пятна, расположенного кнаружи от диска (место выхода зрительного нер­ва). С удалением от желтого пятна количество колбочек уменьшает­ся, а палочек - увеличивается. Колбочки и net л очки - это фоторе­цепторы зрительного анализатора. Колбочки обеспечивают цветовосп-риятие, палочки - световосприятие. Они контактируют с биполярными клетками, которые в свою очередь контактируют с ганглиозными. Ак­соны ганглиозных клеток образуют зрительный нерв (Атлас, С. 101). В диске глазного яблока фоторецепторы отсутствуют это слепое пятно сетчатки.

    Ядро глазного яблока - это светопреломляющие среды, образую­щие оптическую систему глаза: 1) водянистая влага передней каме­ры (она находится между роговицей и передней поверхностью ра­дужки); 2) водянистая влага задней камеры глаза (она находится между задней поверхностью радужки и хрусталиком); 3) хрусталик; 4)стекловидное тело (Атлас, стр. 100). Хрусталик состоит бесцветного волокнистого вещества, имеет форму двояковыпуклой линзы, обладает эластичностью. Он находится внутри капсулы, прикрепляемой нитевидными связками к ресничному телу. При сокра­щении ресничных мышц (при рассматривании близких предметов) связки расслабляются и хрусталик становится выпуклым. Это увели­чивает его преломляющую способность. При расслаблении ресничных мышц (при рассматривании удаленных предметов) связки натягива­ются, капсула сдавливает хрусталик и он уплощается. При этом преломляющая способность его уменьшается. Это явление называется аккомодацией. Стекловидное тело представляет собой бесцветную студенистую прозрачную массу шаровидной формы.

    2.3. Проводниковый отдел зрительного анализатора . Проводниковый отдел зрительного анализатора включает биполяр­ные и ганглиозные клетки мозгового слоя сетчатки, зрительные нервы и зрительные пути, образующиеся после перекреста зрительных нервов. У обезьян и человека перекрещивается половина волокон-зрительных нервов. Это обеспечивает бинокулярное зрение. Зри­тельные пути разделяются на два корешка. Один из ник направляется к верхним буграм четверохолмия среднего мозга, другой - к латеральному коленчатому телу промежуточного мозга. В зрительном бугре и латеральном коленчатом теле происхо­дит передача возбуждения на другой нейрон, отростки (волокна) которого в составе зрительной лучистости направляются к корково­му зрительному центру, который находится в затылочной доле коры больших полушарий (17, 18, 19 поля).

    2.4. Механизм свето- и цветовосприятия.

    Светочувствительные клетки сетчатки (палочки и колбочки) со­держат зрительные пигменты: родопсин (в палочках), йодопсин (в колбочках). Под действием световых лучей, проникающих через зра­чок и оптическую систему глаза, зрительные пигменты палочек и колбочек разрушаются. Это вызывает возбуждение светочувствитель­ных клеток, которое по проводниковому отделу зрительного анали­затора передается в корковый зрительный анализатор. В нем про­исходит высший анализ зрительных раздражений и формируется зрительное ощущение. Световосприятие связано с функцией палочек. Они обеспечивают сумеречное зрение. Световосприятие связано с функцией колбочек. Согласно трехкомпонентной теории зрения, выд­винутой М.В.Ломоносовым существует три типа колбочек, каждый из которых имеет повышенную чувствительность к электромагнитным волнам определенной длины. Одни колбочки более чувствительны к волнам красной части спектра (длина их 620-760 нм), другой тип -к волнам зеленой части спектра (длина их 525-575 нм), третий тип - к волнам фиолетовой части спектра (длина их 427-397 нм). Это и обеспечивает цветовосприятие. Фоторецепторы зрительного анали­затора воспринимают электромагнитные волны длиной от 390 до 760 нм (1 нанометр равен 10-9 м).

    Нарушение функции колбочек вызывает потерю правильного цвето-восприятия. Это заболевание называют дальтонизм по имени анг­лийского физика Дальтона, который впервые описал это заболевание у себя. Отличают три разновидности цветовой слепоты, каждая из них характеризуется нарушением восприятия одного из трех цветов. Краснослепые (при протанопии) не воспринимают красный цвет, си­не-голубые лучи видят как бесцветные. Зеленослепые (при диттера-нопии) не отличают зеленый цвет от темно-красного и голубого. Люди с трианопией не воспринимают лучи синий и фиолетовой части спектра. При полном нарушении цветовосприятия (ахромазия) все цвета воспринимаются как оттенки серого цвета. Дальтонизмом чаще болеют мужчины*(8%), чем женщины (0,5%).

    2.& Рефракция

    Рефракция - это светопреломляющая способность оптической системы глаза при максимально уплощенном хрусталике. Единицей измерения светопреломляющей силы любой оптической системы явля­ется диоптрия (Д). Одна Д равна преломляющей силе линзы с Фокус­ным расстоянием 1 м. При рассматривании близких предметов пре­ломляющая способность глаза равна 70,5 Д, при рассматривании удаленных - 59 Д.

    Проходя через светопреломляющие среды глаза световые лучи преломляются и на сетчатке получается чувствительное, уменьшенное и 1 обратное изображение предметов.

    Различают три типа рефракции: соразмерную (эмметропию), близо­рукую (миопию) и дальнозоркую (гиперметропию).

    Соразмерная рефракция имеет место, когда передне-задний диа­метр глазного яблока соразмерен главному фокусному расстоянию. Главное фокусное расстояние - это расстояние от центра линзы (роговицы) до точки пересечения лучей, при этом изображение предметов находится на сетчатке глаза (нормальное зрение).

    Близорукая рефракция отмечается, когда передне-задний диаметр глазного яблока больше главного фокусного расстояния. Изображе­ние предметов при этом образуется перед сетчаткой глаза. Для коррекции близорукости применяют рассеивающие двояковогнутые линзы, увеличивающие главное фокусное расстояние и переносящее таким образом, изображение на сетчатку глаза.

    Дальнозоркая рефракция отмечается, когда передне-задний диа­метр глазного яблока меньшее главного фокусного расстояния. Изоб­ражение предметов при этом образуется за сетчаткой глаза. Для коррекции дальнозоркости применяют собирающие двояковыпуклые линзы, уменьшающие главное фокусное расстояние и переносящие изображение на сетчатку глаза (Атлас 2, рис. 333).

    Аномалией рефракции вместе с близорукостью и дальнозоркостью является астигматизм. Астигматизм - это неодинаковое преломление лучей роговицей глаза вследствие разной ее кривизны по верти­кальному и горизонтальному меридианам. При этом фокусирования лучей в одной точке не происходит. Небольшая степень астигматизма характерна для глаз и при нормальном зрении, т.к. поверхность ро­говицы не является строго сферической. Астигматизм исправляют ци­линдрическими стеклами, выравнивающими кривизну роговицы по вер­тикальному и горизонтальному меридианам.

    2.6 Возрастные особенности и гигиена зрительного анализатора .

    Форма гладкого яблока у детей более шаровидная, чем,у взрос­лых, у взрослых диаметр глаза составляет 24 мм, а у новорожден­ных - 16 мм. В результате такой формы глазного яблока новорожден­ные дети в 80-94 % случаев обладают дальнозоркой рефракцией. Рост глазного яблока продолжается после рождения и на смену дальнозор­кой рефракции приходит соразмерная рефракция к 9 - 12 годам. Склера у детей тоньше и обладает повышенной эластичностью. Рого­вица у новорожденных детей более толстая и выпуклая. К пяти годам толщина роговицы уменьшается, а радиус кривизны ее не меняется с возрастом. С возрастом роговица становится более плотной и ее преломляющая сила уменьшается. Хрусталик у новорожденных и детей дошкольного возраста более выпуклый и обладает большей эластич­ностью. С возрастом эластичность хрусталика уменьшатся, поэтому с возрастом меняются аккомодационные возможности глаза. В 10 лет ближайшая точка ясного видения находится на расстоянии 7 см от глаза, в 20 лет - 8,3 см, в 50 лет - 50 см, а 60-70 лет приближа­ется к 80 см. Световая чувствительность значительно возрастает от 4 до 20 лет, а после 30 лет начинает снижаться. Различение цветов круто возрастая к 10 годам, продолжает увеличиваться до 30 лет, а затем медленно снижается к старости.

    Глазные болезни и их профилактика. Глазные болезни подразде­ляют на воспалительные и невоспалительные. К мерам профилактики воспалительных заболеваний относится строгое соблюдение правил личной гигиены: частое мытье рук с мылом, частая смена личных полотенец, наволочек, носовых платков. Существенное значение имеет и питание, степень его сбалансированности по содержанию питательных и особенно витаминов. Воспалительные заболевания возникают при травмировании глаз, поэтому необходимо строгое соблюдение правил в процессе выполнения различных работ. Наибо­лее частым нарушением зрения является близорукость. Различают врожденную и приобретенную близорукость. Чаще встречается приоб­ретенная близорукость. Ее развитию способствует продолжительное напряжение на орган зрения на близком расстоянии при чтении и письме. Это вызывает увеличение размеров глаза, глазное яблоко начинает выступать вперед, глазная щель расширяться. Это первые признаки близорукости. Появление и развитие близорукости зависит как от общего состояния, так и от влияния внешних факторов: дав­ления на стенки глаза со стороны мышц при длительной работе глаз, приближении предмета к глазу при работе, чрезмерном накло­не головы вызывающим дополнительное давление крови на глазное яблоко, плохое освещение, неправильно подобранная мебель, чтение мелкого шрифта и т.д.

    Предупреждение нарушений зрения - одна из задач в воспитании здорового подрастающего поколения. Почти вся профилактическая работа должна быть направлена на создание благоприятных условий для работы органа зрения. Большого внимания заслуживает правиль­ный режим труда и отдыха, хорошее питание, сон, длительное пре­бывание на свежем воздухе, дозированный труд, создание нормаль­ных гигиенических условий, кроме того необходимо следить за пра­вильной посадкой детей в школе и дома при чтении, и письме, осве­щением рабочего места, через каждые 40-60 мин необходимо делать отдых глазам на 10-15 мин, для чего нужно рекомендовать детям посмотреть вдаль, чтобы снять напряжение аккомодационной мышцы.

    Практическая работа

    1, Определить остроту зрения (Гуминский Н.В.. Работа N 522)

    2. Определить поле зрения (Гуминский Н.В. Работа Н 54)

    3. Определить размеры слепого пятна.

    4. Данные записать

    5. Провести некоторые опыты со зрением.

    Острота зрения. Остроту зрения определяют с помощью табли­цы Головина-Сивцева. Она состоит из двух половин: в левой рас­положены буквы, в правой - кольца с разрывами. Буквы и коль­ца расположены в случайном порядке по 12 строчек, каждая из которых содержит знаки одинакового размера. При исследовании остроты зрения у детей дошкольного возраста используется спе­циальная таблица с понятными для детей тест-объектами (елоч­ка, самолет, гриб и пр.). Напротив каждой строки слева обозначе­на величина остроты зрения в условных единицах. Верхняя строка соответствует остроте зрения 0,1. Таблица рассчи­тана на исследование остроты зрения с расстояния 5 м.

    При определении остроты зрения таблица помещается на стороне напротив окна, и на уровне глаз обследуемого. Острота каждого глаза устанавливается отдельно, начиная, с правого. Другой глаз прикрывается листом бумаги или тетрадью. Указкой или тупым концом карандаша на таблице показываются буквы или кольца. Если испытуемый с расстояния 5 м правильно называет знаки верхних 10 строк таблицы, то острота его зрения равна 1,0 и счи­тается нормальной.

    Пример. Обследуемый с расстояния 5 м читает без ошибок только 5 верхних строк таблицы Головина-Сивцева. Заключение. Острота зрения равна 0,5.

    В случае отсутствия таблицы остроту зрения ориентировочно можно определить с помощью тест-объектов в виде буквы «Ш» различных размеров, которые можно вырезать из черной бумаги или из таблиц Головина. При остроте зрения равной 1,0 самая маленькая из букв различается с расстояния 5 м (Д = 5 м), сред­няя и большая буквы соответственно - с расстояния 10 м (Д = 10 м) и 25 м (Д = 25 м). Вначале показывается наименьшая из букв и определяется расстояние (d ), с которого она четко различается обоими глазами и каждым в отдельности. Допусти­мый уровень сокращения расстояния составляет 3 м. Если буква не различается с этого расстояния, то используют буквы боль­ших размеров. Определение остроты зрения производят по фор­муле: V (visus) =d :Д, где V- острота зрения в относительных едини­цах; d - расстояние, с которого испытуемый правильно читает букву; Д - расстояние в метрах, с которого буква должна разли­чаться правильно (5, 10 и 25 м).

    Пример. Буква «Ш» наименьших размеров правильно читается с расстояния 4 м. Следует определить ориентировочно остроту зрения об­следуемого.

    Р е ш е н и е. V= d: Д = 4:5 = 0,8.

    Заключение. Острота зрения испытуемого равна 0,8.

    Слепое пятно. Для его определения необходима небольшая проволочная указка с белым кружком на конце, лист черной бумаги, цветной мелок.

    В том месте сетчатки, где находится диск зрительного нерва, нет светочувстви­тельных клеток. Диск зрительного нерва занимает не так уж мало места на сет­чатке. В вашем поле зрения есть соот­ветствующая диску овальная зона - это сле­пое пятно.

    Сделайте указку из тонкой проволо­ки, насадите на ее кончик белый кру­жок диаметром примерно 3 мм. В цен­тре листа черной бумаги размером не менее 20 - 24 см поставьте белую точку. Прикрепите бумагу к стене. Завяжите один глаз вашему партнеру и усадите его так, чтобы второй глаз оказался точно против фиксационной точки на расстоянии 30-35 см. Пусть он смотрит не подвижно на эту точку. Белым кружком на указке ведите по листу черной бума­ги. Сначала испытуемый видит кружок, затем он исчезает. Это место отметьте и ведите указку дальше - кружок снова появится. Это место также отметьте. Повторите процедуру в нескольких на­правлениях - вы получите овальный кон­тур слепого пятна.

    Таким образом, предмет не виден, когда он проецируется на диск зритель­ного нерва. Измерьте отмеченную об­ласть слепого пятна. А теперь подсчитайте размер соответствующей области на расстоянии ста метров от глаза. Можно скрыть целый автомобиль.

    Опыты со зрением.

    Известны тысячи зрительных иллюзий.

    1. Фигуры-перевертыши:

    Линии кажутся непараллельными из-за того, что их под углом пересекают другие линии.

    а б

    3. Ведущий глаз

    Знаете ли вы, что один глаз у вас является ведущим?

    Возьмите кусок картона, в котором проде­лано отверстие диаметром примерно 2,5 см. Держите картон на вытянутых руках и через отверстие смотрите на какой-нибудь удален­ный предмет. Постепенно приближайте кар­тон к лицу, пока он не коснется вашего носа. Тогда станет ясно, что точно через отверстие смотрел только один глаз, он и является веду­щим. Повторив этот опыт, определите, всегда ли ведущим оказывается один и тот же глаз. У некоторых людей глаза равноценны и ве­дущий глаз выявить нельзя.

    4. *Дыра* в ладони

    Свернете узкую трубку из газеты и приставь­те ее к одному глазу. Рядом с концом трубки перед другим глазом поставьте ладонь, чтобы она заслонила центр поля зрения этого глаза. Тем самым вы выключаете всю периферию поля зрения одного глаза и центр поля зрения дру­гого глаза. Смотрите вдаль прямо перед собой. Образуется довольно странное изображение: его периферия - предметы в комнате и ладонь, а центр - дыра в ладони, сквозь которую видны далекие предметы, - и все это составляет еди­ную картину.

    Этот опыт еще раз наглядно демонстриру­ет, что целостность поля зрения - столь важ­ное условие, что все помехи целостному вос­приятию устраняются.

    Одним из важнейших свойств всего живого является раздражимость - способность воспринимать информацию о внутренней и внешней среде с помощью рецепторов. В ходе этого ощущение, свет, звук преобразуются рецепторами в нервные импульсы, которые анализируются центральным отделом нервной системы.

    И.П. Павлов при изучении восприятия корой головного мозга различных раздражений ввел понятие анализатор. Под этим термином скрыта вся совокупность нервных структур, начинающаяся рецепторами и оканчивающаяся корой больших полушарий.

    В любом анализаторе выделяют следующие отделы:

    • Периферический - рецепторный аппарат органов чувств, который преобразует действие раздражителя в нервные импульсы
    • Проводниковый - чувствительные нервные волокна, по которым движутся нервные импульсы
    • Центральный (корковый) - участок (доля) коры больших полушарий, который анализирует поступающие нервные импульсы

    С помощью зрения человек получает большую часть информации об окружающей среде. Поскольку эта статья посвящена зрительному анализатору, рассмотрим его строение и отделы. Наибольшее внимание обратим на периферическую часть - орган зрения, состоящий из глазного яблока и вспомогательных органов глаза.


    Глазное яблоко лежит в костном вместилище - глазнице. Глазное яблоко имеет три оболочки, которые мы детально изучим:


    Большую часть полости глаза занимает стекловидное тело - прозрачное округлое образование, которое придает глазу шарообразную форму. Также внутри находится хрусталик - прозрачная двояковыпуклая линза, расположенная позади зрачка. Вы уже знаете, что изменения кривизны хрусталика обеспечивают аккомодацию - настройку глаза на наилучшее видение объекта.

    Но благодаря каким именно механизмам происходит изменение его кривизны? Это возможно за счет сокращения ресничной мышцы. Попробуйте поднести к носу свой палец, постоянно смотря на него. Вы почувствуете в глазах напряжение - это связно с сокращением ресничной мышцы, благодаря чему хрусталик становится более выпуклым, чтобы мы могли рассмотреть близкорасположенный предмет.

    Представьте другую картину. В кабинете врач говорит пациенту: "Расслабьтесь, посмотрите вдаль". При взгляде вдаль ресничная мышца расслабляется, хрусталик становится уплощенным. Я очень надеюсь, что приведенные мной примеры помогут вам мнемонически запомнить состояния ресничной мышцы при рассматривании объектов вблизи и вдали.


    По мере прохождения света через прозрачные среды глаза: роговицу, жидкость передней камеры глаза, хрусталик, стекловидное тело - свет преломляется и оказывается на сетчатке. Запомните, что изображение на сетчатке:

    • Действительное - соответствует тому, что на самом деле видим
    • Обратное - перевернуто вверх ногами
    • Уменьшенное - размеры отраженной "картинки" пропорционально уменьшены


    Проводниковый и корковый отделы зрительного анализатора

    Мы с вами изучили периферический отдел зрительного анализатора. Теперь вы знаете, что палочки и колбочки, возбужденные световым воздействием, генерируют нервные импульсы. Отростки нервных клеток собираются в пучки, которые образуют зрительный нерв, выходящий из глазницы и направляющийся к корковому представительству зрительного анализатора.

    Нервные импульсы по зрительному нерву (проводниковый отдел) достигают центрального отдела - затылочных долей коры больших полушарий. Именно здесь происходит обработка и анализ информации, полученной в виде нервных импульсов.

    При падении на затылок в глазах может появиться белая вспышка - "искры из глаз". Это связано с тем, что при падении механически (вследствие удара) возбуждаются нейроны затылочной доли, зрительного анализатора, что и приводит к подобному явлению.


    Заболевания

    Конъюнктива - слизистая оболочка глаза, расположенная над роговицей, покрывающая глаз снаружи и выстилающая внутреннюю поверхность век. Главная функция конъюнктивы - выработка слезной жидкости, увлажняющей и смачивающей поверхность глаза.

    В результате аллергических реакций или инфекций нередко происходит воспаление слизистой оболочки глаза - конъюнктивит, который сопровождается гиперемией (повышенным кровенаполнением) сосудов глаза - "красными глазами", а также светобоязнью, слезотечением и отеком век.

    Нашего пристального внимания требуют такие состояния как близорукость и дальнозоркость, которые могут быть врожденными, и, в таком случае, связанными с изменением формы глазного яблока, либо приобретенными и связанными с нарушением аккомодации. В норме лучи собираются на сетчатке, но при этих заболеваниях все складывается иначе.


    При близорукости (миопии) фокус лучей от отраженного предмета возникает впереди сетчатки. При врожденной близорукости глазное яблоко имеет удлиненную форму, из-за которой лучи не могут достичь сетчатки. Приобретенная близорукость развивается из-за чрезмерной преломляющей силы глаза, которая может возникать вследствие увеличения тонуса ресничной мышцы.

    Близорукие люди плохо видят предметы, расположенные вдали. Для коррекции миопии им требуются очки с двояковогнутыми линзами.


    При дальнозоркости (гиперметропии) фокус лучей, отраженных от предмета, собирается позади сетчатки. При врожденной дальнозоркости глазное яблоко укороченное. Приобретенная форма характеризуется уплощением хрусталика и нередко сопутствует пожилому возрасту.

    Дальнозоркие люди плохо видят близкорасположенные предметы. Им необходимы очки с двояковыпуклыми линзами для коррекции зрения.


    • Читать, держа текст на расстоянии 30-35 см от глаз
    • При письме источник света (лампа) для правшей должен находиться с левой стороны, и, наоборот, для левшей - с правой стороны
    • Следует избегать чтения лежа при слабом освещении
    • Следует избегать чтения в транспорте, так как расстояние от текста до глаз постоянно меняется. Ресничная мышца то сокращается, то расслабляется - это приводит к ее слабости, снижению способности к аккомодации и ухудшению зрения
    • Следует избегать травм глаза, так как повреждения роговицы вызывают нарушение преломляющей способности, что приводит к ухудшению зрения


    ©Беллевич Юрий Сергеевич

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к