ВНС делится на два отдела – симпатический и парасимпатический. По строению они различаются расположением своих центральных и эффекторных нейронов, своими рефлекторными дугами. Они различаются так же и по своему влиянию на функции иннервируемых структур.

В чем состоят различия этих отделов?

Центральные нейроны симпатической нервной системы расположены, как правило, в сером веществе боковых рогах спинного мозга от 8 шейного до 2-3 поясничных сегментов. Таким образом, симпатические нервы всегда отходят только от спинного мозга в составе спинномозговых нервов по передним (вентральным) корешкам.

Центральные нейроны парасимпатической же нервной системы находятся в крестцовых сегментах спинного мозга (2-4 сегменты), но большая часть центральных нейронов находятся в стволе мозга. Большая же часть нервов парасимпатической системы отходят от головного мозга в составе смешанных черепно - мозговых нервов. А именно: из среднего мозга в составе III пары (глазодвигательный нерв) - иннервируя мышцы ресничного тела и кольцевые мышцы зрачка глаза, из Варолиевого моста выходит лицевой нерв - VII пара (секреторный нерв) иннервирует железы слизистой оболочки носа, слёзные железы, подчелюстную и подъязычную железы. Из продолговатого мозга отходит IX пара - секреторный, языкоглоточный нерв, иннервирует околоушные слюнные железы и железы слизистой щек и губ, X пара (блуждающий нерв) - самая значительная часть парасимпатического отдела ВНС, проходя в грудную и брюшную полости, иннервирует весь комплекс внутренних органов. Нервы, отходящие от крестцовых сегментов (2-4 сегменты), иннервируют органы малого таза и входят в состав подчревного сплетения.

Эффекторные нейроны симпатической нервной системы вынесены на периферию и находятся или в паравертебральных ганглиях (в симпатической нервной цепочке), или превертебрально. Постганглионарные волокна образуют различные сплетения. Среди них наиболее важное значение имеет чревное (солнечное) сплетение, но в его состав входят не только симпатические, но и парасимпатичесике волокна. Оно обеспечивает иннервацию всех органов расположенных в брюшной полости. Вот почему так опасны удары и травмы верхней части брюшной полости (примерно под диафрагму). Они способны вызвать шоковое состояние. Эффекторные нейроны парасимпатической нервной системы всегда находятся в стенках внутренних органов (интрамурально). Таким образом, у парасимпатических нервов большая часть волокон покрыты миелиновой оболочкой, и импульсы достигают эффекторных органов быстрее, чем у симпатической. Это обеспечивает парасимпатические нервные влияния, обеспечивающие сбережение ресурсов органа и организма в целом. Внутренние органы, расположенные в грудной и брюшной полости иннервируются главным образом блуждающим нервом (n.vagus), поэтому эти влияния часто называют вагусными (вагальными).


Имеются существенные различия и в их функциональных характеристиках.

Симпатический отдел, как правило, мобилизирует ресурсы организма для осуществления энергичной деятельности (усиливается работа сердца, сужается просвет кровеносных сосудов и повышается артериальное давление, учащается дыхание, расширяются зрачки и т.п.), но происходит торможение работы пищеварительной системы, за исключением работы слюнных желез. У животных это происходит всегда (слюна нужна им для зализывание возможных ран), но и у некоторых людей при возбуждении слюноотделение усиливается.

Парасимпатическая, напротив, стимулирует работу пищеварительной системы. Неслучайно после сытного обеда отмечается вялость, нам так хочется поспать. При возбуждении парасимпатической нервная система обеспечивает восстановление равновесия внутренней среды организма. Она обеспечивает работу внутренних органов в состоянии покоя.

В функциональном смысле симпатическая и парасимпатическая системы являются антагонистами, дополняя друг друга в процессе поддержания гомеостазиса, поэтому многие органы получают двойную иннервацию - и со стороны симпатического, и со стороны парасимпатического отделов. Но, как правило, у разных людей преобладает или тот или другой отдел ВНС. Неслучайно известный отечественный физиолог Л.А. Орбели попытался классифицировать людей по этому признаку. Он выделил три типа людей: симпатикотоники (с преобладанием тонуса симпатической нервной системы) - их отличает сухость кожи, повышенная возбудимость; второй тип - ваготоники с преобладанием парасимпатических влияний - для них характерна жирная кожа, замедленные реакции. Третий тип -промежуточный . Л.А. Орбели считал знание этих типов важным для врачей, особенно при назначении доз лекарственных препаратов, т. к. одни и те же лекарственные препараты в одинаковой дозе по-разному влияют на пациентов с разным типом ВНС. Даже из повседневной практики каждый из нас может заметить, что чай и кофе вызывают различную реакцию у людей с разным типом функциональной активности ВНС. Из экспериментов на животных известно, что у животных с разным типом ВНС введение брома и кофеина так же оказывает различные реакции. Но на протяжении жизни человека его тип ВНС может изменяться в зависимости от возраста, периода полового созревания, беременности и других влияний. Несмотря на перечисленные различия, обе эти системы, однако, составляют единое функциональное целое, т. к. интеграция их функций осуществляется на уровне ЦНС. Вы уже знаете, что в сером веществе спинного мозга центры вегетативных и соматических рефлексов успешно соседствуют, также как они располагаются близко друг с другом в стволе мозга, и в высших подкорковых центрах. Так же как, в конечном счете, в единстве функционирует вся нервная система.

Подкорковые высшие центры ВНС находятся в гипоталамусе, который связан обширными нервными связями с другими отделами ЦНС. Гипоталамус является в то же время частью лимбической системы мозга. Функции вегетативной нервной системы, как известно, не контролируются сознанием человека. Но именно через гипоталамус и (связанный с ним гипофиз) высшие отделы ЦНС способны влиять на функциональную активность вегетативной нервной системы и через неё на функции внутренних органов. Функции дыхательной, сердечно-сосудистой, пищеварительной и других систем органов непосредственно регулируются вегетативными центрами, расположенными в среднем, продолговатом отделах головного и отделах спинного мозга, которые подчинены в своих функциях центрам гипоталамуса. В то же время туда же продолжаются ядра черной субстанции, черные ядра, располдоженные и в среднем мозге, ретикулярная формация. Действительно, реализация влияния психических реакций человека на соматические – повышение артериального давления при гневе, повышенное потоотделение при страхе, пересыхание во рту при волнении и многие другие проявления психических состояний, – происходит при участии гипоталамуса и ВНС под влиянием коры больших полушарий.

Гипоталамус является частью промежуточного мозга. В нем можно выделить передний отдел (передний гипоталамус) и задний отдел (задний гипоталамус). В гипоталамусе расположены многочисленные скопления серого вещества - ядра. Их более 32 пар. По своему расположению они делятся на области - преоптическую, переднюю, среднюю и заднюю. В каждой из этих областей лежат группы ядер, отвечающих за вегетативную регуляцию функций, а также ядра, выделяющие нейрогормоны. Эти ядра различают также по их функциям. Так, в передней области находятся ядра, выполняющие функции регуляции теплоотдачи за счёт расширения кровеносных сосудов и увеличения отделения пота. А ядра, регулирующие теплопродукцию (за счёт повышения катаболических реакций и непроизвольных мышечных сокращений), располагаются в задней области гипоталамуса. В гипоталамусе расположены центры регуляции всех видов обмена веществ - белкового, жирового, углеводного, центры голода и насыщения. Среди групп ядер гипоталамуса находятся центры регуляции водно-солевого обмена, связанные с центром жажды, формирующего мотивацию поиска и потребления воды.

В передней области гипоталамуса лежат ядра, участвующие в процессах регуляции чередования сна и бодрствования (циркадных ритмов), а так же в регуляции полового поведения.

Проекции вегетативных центров представлены и в коре больших полушарий - в основном в лимбической и ростральной части коры. Парасимпатические и симпатические проекции одних и тех же органов проецируются в одни и те же или близко расположенные участки коры, это понятно, т. к. они совместно обеспечивают функции этих органов. Установлено, что парасмпатические проекции в коре представлены гораздо шире, чем симпатические, однако, функционально симпатические влияния более продолжительны, чем парасимпатические. Это связано с различиями медиаторов , которые выделяются окончаниями симатических (адреналин и норадреналин) и парасимпатических (ацетилхолин) волокон. Ацетилхолин - медиатор парасимпатической системы - быстро инактивируется ферментом ацетилхолинэстеразой (холинэстеразой) и её влияния быстро сходят на нет, в то время как адреналин и норадреналин инактивируются значительно медленнее (ферментом моноаминоксидазой), их влияние усиливается норадреналином и адреналином, выделяемыми надпочечниками. Таким образом, симпатические влияния длятся дольше и оказываются более выраженными, чем парасимпатические. Однако, во время сна парасимпатические влияния на все наши функции превалируют, что способствует восстановлению ресурсов организма.

Но, несмотря на различия в строении и функциях различных отделов ВНС, различия соматической и вегетативной систем, - в конечном итоге, вся нервнаяя система работает как единое целое и интеграция происходит на всех уровнях как спинного, так и головного мозга. И высшим уровнем интеграции, безусловно, является кора больших полушарий головного мозга, объединяющая как нашу двигательную активность, работу наших внутренних органов так и, в конечном итоге, всю психическую деятельность человека.

18. Физиология надпочечников, роль их гормонов в регуляции функций организма, взаимоотношении с другими регуляторными механизмами .

Ацетилхолин. Ацетилхолин служит нейромедиатором во всех вегетативных ганглиях, в постганглионарных парасимпатических нервных окончаниях и в постганглионарных симпатических нервных окончаниях, иннервирующих экзокринные потовые железы. Фермент холинацетилтрансфераза катализирует синтез ацетилхолина из ацетил КоА, продуцируемого в нервных окончаниях, и из холина, ак­тивно поглощаемого из внеклеточной жидкости. Внутри холинергических нервных окончаний запасы ацетилхолина сохраняются в дискретных синаптических пу­зырьках и высвобождаются в ответ на нервные импульсы, деполяризующие окон­чания нервов и увеличивающие поступление кальция внутрь клетки.

Холинергические рецепторы. Различные рецепторы для ацетил­холина существуют на постганглионарных нейронах в вегетативных ганглиях и в постсинаптических вегетативных эффекторах. Рецепторы, расположенные в вегетативных ганглиях и в мозговом веществе надпочечников, стимулируются главным образом никотином (никотиновые рецепторы), а те рецепторы, которые находятся в вегетативных клетках эффекторных органов, стимулируются алка­лоидом мускарином (мускариновые рецепторы). Ганглиоблокирующие средства действуют против никотиновых рецепторов, в то время как атропин блокирует мускариновые рецепторы. Мускариновые (М) рецепторы подразделяются на два типа. Mi-рецепторы локализуются в центральной нервной системе и, возможно, в парасимпатических ганглиях; М 2 -рецепторы представляют собой ненейронные мускариновые рецепторы, расположенные на гладкой мускулатуре, миокарде и эпителии желез. Селективным агонистом М 2 -рецепторов служит bнехол; проходящий испытания пирензепин (Pirenzepine) представляет собой селективный антагонист M 1 -рецепторов. Этот препарат вызывает значительное снижение секреции желудочного сока. Другими медиаторами мускариновых эффектов могут служить фосфатидилинозитол и угнетение активности аденилатциклазы.

Ацетилхолинэстераза. Гидролиз ацетилхолина ацетилхолинэстеразой инактивирует этот нейромедиатор в холинсргических синапсах. Этот фермент (известный также под названием специфической, или истинной, холинэстеразы) присутствует в нейронах и отличается от бутирохолинэстеразы (холинэстеразы сыворотки крови или псевдохолинэстеразы). Последний фермент присутствует в плазме крови и в ненейронных тканях и не играет первостепенной роли в прекра­щении действия ацетилхилина в вегетативных эффекторах. Фармакологические эффекты антихолинэстеразных средств обусловлены угнетением нейронной (ис­тинной) ацетилхолинэстеразы.

Физиология парасимпатической нервной системы. Парасимпатическая нерв ная система участвует в регуляции функций сердечно-сосудистой системы, пи­щеварительного тракта и мочеполовой системы. Ткани таких органов, как пе­чень, ночки, поджелудочная и щитовидная железы, также обладают парасимпа­тической иннервацией, что позволяет предположить участие парасимпатической нервной системы также и в регуляции обмена веществ, хотя холинергическое воздействие на обмен веществ охарактеризовано недостаточно ясно.



Сердечно-сосудистая система. Парасимпатическое воздействие на сердце опосредуется через блуждающий нерв. Ацетилхолин уменьшает ско­рость спонтанной деполяризации синусно-предсердного узла и снижает частоту сердечных сокращений. Частота сердечных сокращений при различных физиоло­гических состояниях является результатом координированного взаимодействия между симпатической стимуляцией, парасимпатическим угнетением и автомати­ческой активностью синусо-предсердного водителя ритма. Ацетилхолин также задерживает проведение возбуждения в мышцах предсердия при укорачивании эффективного рефрактерного периода; такое сочетание факторов может вызвать развитие или постоянное сохранение предсердных аритмий. В предсердно-желудочковом узле он снижает скорость проведения возбуждения, увеличивает продолжительность эффективного рефрактерного периода и тем самым ослабляет реакцию желудочков сердца во время трепетания предсердий или их фибрилляции (гл. 184). Вызываемое ацетилхолином ослабление инотропного действия связано с пресинаптцческим угнетением симпатических нервных окончаний, а также с пря­мым угнетающим действием на миокард предсердий. Миокард желудочков испы­тывает меньшее влияние ацетилхолина, поскольку его иннервация холинергическими волокнами минимальна. Прямое холинергическое воздействие на регуля­цию периферической резистентности кажется маловероятным из-за слабой парасимпатической иннервации периферических сосудов. Однако парасимпати­ческая нервная система может влиять на периферическую резистентность опо­средованно путем угнетения высвобождения норадреналина из симпатических нервов.

Пищеварительный тракт. Парасимпатическая иннервация кишеч­ники осуществляется через блуждающий нерв и тазовые крестцовые нервы. Парасимпатическая нервная система повышает тонус гладкой мускулатуры пище­варительного тракта, расслабляет сфинктеры, усиливает перистальтику. Ацетил­холин стимулирует экзогенную секрецию эпителием желез гастрина, секретина и инсулина.

Мочеполовая и дыхательная системы. Крестцовые пара­симпатические нервы иннервируют мочевой пузырь и половые органы. Ацетил­холин усиливает перистальтику мочеточников, вызывает сокращение мускулатуры мочевого пузыря, осуществляющей его опорожнение, и расслабляет мочеполовую диафрагму и сфинктер мочевого пузыря, тем самым играя основную роль в ко­ординации процесса мочеиспускания. Дыхательные пути иннервированы пара­симпатическими волокнами, отходящими от блуждающего нерва. Ацетилхолин увеличивает секрецию в трахее и бронхах и стимулирует бронхоспазм.

Фармакология парасимпатической нервной системы. Холинергические агонисты. Терапевтическое значение ацетилхолина невелико из-за большой разбросанности его влияний и непродолжительности действия. Одно­родные с ним вещества менее чувствительны к гидролизу холинэстеразой и имеют более узкий диапазон физиологических эффектов. bнехол, единственный си­стемный холинергический агонист, применяемый в повседневной практике, стиму­лирует гладкую мускулатуру пищеварительного тракта и мочеполовых путей. оказывая минимальное влияние на сердечно-сосудистую систему. Его используют при.печении задержки мочи в случае отсутствия обструкции мочевыводящих путей и реже при лечении нарушений функции пищеварительного тракта, таких как атония желудка после ваготомии. Пилокарпин и карбахол являются холинергическими агонистами местного действия, используемыми для лечения глаукомы.

Ингибиторы ацетилхолинэстеразы. Ингибиторы холинэстера­зы усиливают воздействие парасимпатической стимуляции путем снижения инактивации ацетилхолина. Терапевтическое значение обратимых ингибиторов холин­эстеразы зависит от роли ацетилхолина как нейромедиатора в синапсах скелет­ных мышц между нейронами и клетками-эффекторами и в центральной нервной системе и включает в себя лечение миастении (гл. 358), прекращение нервно-мышечной блокады, развившейся после наркоза, и аннулирование интоксикации, вызванной веществами, обладающими центральной антихолинергической актив­ностью. Физостигмин, представляющий собой третичный амин, легко проникает в центральную нервную систему, в то время как родственные ему четвертичные амины [прозерин, пиридостигмина бромид, оксазил и эдрофоний (Edrophonium)] этим свойством не обладают. Фосфорорганические ингибиторы холинэстеразы вызывают необрати-мую блокаду холинэстеразы; эти вещества используют глав­ным образом в качестве инсектицидов, и они представляют в основном токсико­логический интерес. Что касается вегетативной нервной системы, ингибиторы холинэстеразы находят ограниченное применение для лечения дисфункции глад­кой мускулатуры кишечника и мочевого пузыря (например, при паралитической непроходимости кишечника и атонии мочевого пузыря). Ингибиторы холинэсте­разы вызывают ваготоническую реакцию в сердце и могут быть эффективно использованы с целью прекращения приступов пароксизмальной суправентрикулярной тахикардии (гл. 184).

Вещества, блокирующие холинергические рецепторы. Атропин блокирует мускариновые холинергические рецепторы и незначительно влияет на холинергическую нейропередачу в вегетативных ганглиях и нервно-мышечных синапсах. Многие воздействия атропина и атропиноподобных лекарст­венных средств на центральную нервную систему могут быть отнесены на счет блокады центральных мускариновых синапсов. Однородный алкалоид скополамин сходен по своему действию с атропином, но вызывает сонливость, эйфорию и амнезию - эффекты, которые позволяют использовать его для проведения премедикации перед обезболиванием.

Атропин увеличивает частоту сердечных сокращений и повышает атриовен­трикулярную проводимость; это делает целесообразным его применение при лече­нии брадикардии или сердечной блокады, связанной с повышенным тонусом блуждающего нерва. Кроме того, атропин снимает опосредуемый через холинер­гические рецепторы бронхоспазм и уменьшает секрецию в дыхательных путях, что позволяет применять его для премедикации перед наркозом.

Атропин также снижает перистальтику пищеварительного тракта и секрецию в нем. Хотя различные производные атропина и родственные ему вещества [на­пример, пропантелин (Propantheline), изопропамид (Isopropamide) и гликопирролат (Glycopyrrolate) ] пропагандировали в качестве средств для лечения боль­ных, страдающих язвой желудка или диарейным синдромом, длительное приме­нение этих лекарственных препаратов ограничивается такими проявлениями парасимпатического угнетения, как сухость во рту и задержка мочи. Пирензепин, проходящий испытание селективный Mi-ингибитор, угнетает секрецию в желудке, используемый в дозах, оказывающих минимальное антихолинергическое действие в других органах и тканях; этот препарат может быть эффективен при лечении язвы желудка. При ингаляции атропин и родственное ему вещество ипратропий (Ipratropium) вызывают расширение бронхов; они были использованы в экспе­риментах для лечения бронхиальной астмы.

ГЛАВА 67. АДЕНИЛАТЦИКЛАЗНАЯ СИСТЕМА

Генри Р. Боурн (Henry R. Bourne)

Циклический 3`5`-монофосфат (циклический АМФ) действует в качестве внутриклеточного вторичного медиатора для множества разнообразных пептидных гормонов и биогенных аминов, лекарственных средств и токсинов. Следо­вательно, изучение аденилатциклазной системы необходимо для понимания пато­физиологии и лечения многих болезней. Исследование роли вторичного медиатора циклического АМФ расширило наши знания об эндокринной, нервной и сердечно­сосудистой регуляции. И наоборот, исследования, ставившие своей целью раз­гадать биохимические основы определенных заболеваний, способствовали понима­нию молекулярных механизмов, регулирующих синтез циклического АМФ.

Биохимия. Последовательность действия ферментов, участвующих в реализа­ции эффектов гормонов (первичных медиаторов) осуществляющихся через цикли­ческий АМФ, представлена на рис. 67-1, а перечень гормонов, действующих с помощью этого механизма, приведен в табл. 67-1. Деятельность этих гормонов инициируется их связыванием со специфическими рецепторами, расположенными на наружной поверхности плазматической мембраны. Комплекс гормон - рецеп­тор активирует связанный с мембраной фермент аденилатциклазу, которая син­тезирует циклический АМФ из внутриклеточного АТФ. Внутри клетки цикличе­ский АМФ передает информацию от гормона, связываясь с собственным рецепто­ром и активируя этот рецептор-зависимую от циклического АМФ протеинкиназу. Активированная протеинкиназа передает концевой фосфор АТФ специфическим белковым субстратам (как правило, ферментам). Фосфорилирование этих фер­ментов усиливает (или в некоторых случаях угнетает) их каталитическую активность. Измененная активность этих ферментов и вызывает характерное действие определенного гормона на его клетку-мишень.

Второй класс гормонов действует путем связывания с мембранными рецепто­рами, которые ингибируют аденилатциклазу. Действие этих гормонов, обозна­чаемых Ни, в отличие от стимулирующих гормонов (Не) описано ниже более детально. На рис. 67-1 показаны также дополнительные биохимические механиз­мы, ограничивающие действие циклического АМФ. Эти механизмы также могут регулироваться при участии гормонов. Это позволяет осуществлять тонкую настройку функции клеток с помощью дополнительных нервных и эндокринных механизмов.

Биологическая роль циклического АМФ. Каждая из бел­ковых молекул, участвующих в сложных механизмах стимулирования - угне­тения, представленных на рис. 67-1, представляет собой потенциальное место регуляции гормональной реакции на терапевтическое и токсическое действие лекарственных средств и на патологические изменения, возникающие в ходе забо­левания. Специфические примеры таких взаимодействий обсуждаются в после­дующих разделах этой главы. Для сведения их воедино следует рассмотреть общие биологические функции АМФ в качестве вторичного медиатора, что целесообразно сделать на примере регуляции процесса высвобождения глюкозы из запасов гликогена, содержащихся в печени (биохимическая система, в которой был обнаружен циклический АМФ), с помощью глюкагона и других гормонов.

Рис. 67-1. Циклический АМФ - вторичный внутриклеточный медиатор для гор­монов.

На рисунке изображена идеальная клетка, содержащая молекулы белка (ферменты), участвующие в медиаторных действиях гормонов, осуществляемых через циклический АМФ. Черные стрелки указывают путь потока информации от стимулирующего гормона (Не) до клеточной реакции, в то время как светлые стрелки указывают направление противоположных процессов, модулирующих или ингибирующих поток информации. Внеклеточные гормоны стимулируют (Не) или ингибируют (Ни) мембранный фер­мент - аденилатциклазу (АЦ) (см. описание в тексте и рис. 67-2). АЦ превращает АТФ в циклический АМФ (цАМФ) и пирофосфат (ПФи). Внутриклеточная концент­рация циклического АМФ зависит от соотношения между скоростью его синтеза и характеристиками двух других процессов, направленных на выведение его из клетки: расщепление циклической нуклеотидной фосфодиэстеразой (ФДЭ), которая превращает циклический АМФ в 5"-АМФ, и удаление из клетки энергетически-зависимой транспорт­ной системой. Внутриклеточные эффекты циклического АМФ опосредуются или регу­лируются белками по меньшей мере пяти дополнительных классов. Первый из них - зависимая от цАМФ протеинкиназа (ПК) - состоит из регулирующих (Р) и катали­тических (К) субъединиц. В голоэнзиме ПК субъединица К каталитически неактивна (ингибирована субъединицей Р). Циклический АМФ действует, связываясь с субъедини­цами Р, высвобождая субъединицы К из комплекса цАМФ-Р. Свободные каталити­ческие субъединицы (К +) катализируют передачу концевого фосфора АТФ в специфи­ческие белковые субстраты (С), например, фосфорилазкиназу. В фосфорилированном состоянии (С~Ф) эти белковые субстраты (обычно ферменты) инициируют характер­ные эффекты циклического АМФ внутри клетки (например, активацию гликогенфосфорилазы, ингибирование гликогенсинтетазы). Доля белковых субстратов киназы в фосфо­рилированном состоянии (С~Ф) регулируется белками двух дополнительных классов: ингибирующий киназу белок (ИКБ) обратимо связывается с К^, делая ее каталитиче­ски неактивной (ИКБ-К) Фосфатазы (Ф-аза) превращают С~Ф обратно в С, отнимая ковалентно связанный фосфор.

Перенос гормональных сигналов через плазмати­ческую мембрану. Биологическая стабильность и структурная сложность пептидных гормонов, подобных глюкагону, делают их носителями разнообразных гормональных сигналов между клетками, но ослабляют их способность проникать через клеточные мембраны. Гормончувствительная аденилатциклаза позволяет информационному содержанию гормонального сигнала проникать через мембра­ну, хотя сам гормон не может проникнуть через нее.

Таблица 67-1. Гормоны, для которых циклический АМФ служит в качестве вторичного медиатора

Гормон Мишень:орган/ткань Типичное действие
Адренокортикотропный гормон Кора надпочечников Продуцирование корти-зола
Кальцитонин Кости Концентрация кальция в сыворотке крови
Катехоламины (b-адре-нергические) Сердце ­ Частота сердечных со­кращений, сократимость миокарда
Хорионический гонадо-тропин Яичники, семенники ­ Продуцирование поло­вых гормонов
Фолликулостимулирую-щий гормон Яичники, семенники ­ Гаметогенез
Глюкагон Печень Гликогенолиз, высвобож­дение глюкозы
Лютеинизирующий гормон Яичники, семенники \ Продуцирование поло­вых гормонов
Рилизинг-фактор лютеи-низирующего гормона Гипофиз f Высвобождение лютеи-низирующего гормона
Меланоцитстимулирую-щий гормон Кожа (меланоциты) T Пигментация
Гормон паращитовидных желез Кости, почки T Концентрация кальция в сыворотке крови [ концентрация фосфора в сыворотке крови
Простациклин, проста-гландин е| Тромбоциты [ Агрегация тромбоцитов
Тиреотропный гормон Щитовидная железа T Продуцирование и вы­свобождение Тз и Т4
Рилизинг-фактор тирео-тропного гормона Гипофиз f Высвобождение тирео-тропного гормона
Вазопрессин Почки f Концентрация мочи

Примечание. Здесь перечислены только наиболее убедительно подтвержденные эффекты, опосредуемые циклическим АМФ, хотя многие из этих гормонов проявляют многочисленные действия в различных органах-мишенях.

Усиление. Связываясь с небольшим числом специфических рецепторов (вероятно, меньшим, чем 1000 на клетку), глюкагон стимулирует синтез гораздо большего числа молекул циклического АМФ. Эти молекулы в свою очередь сти­мулируют зависимую от циклического АМФ протеинкиназу, которая вызывает активацию тысяч молекул содержащейся в печени фосфорилазы (фермента, ограничивающего распад гликогена) и последующее высвобождение миллионов молекул глюкозы из единичной клетки.

Метаболическая координация на уровне единичной клетки. Помимо того что обусловленное циклическим АМФ фосфорилирование белка стимулирует фосфорилазу и способствует превращению гликогена в глюко­зу, этот процесс одновременно дезактивирует фермент, синтезирующий гликоген (гликогенсинтетазу), и стимулирует ферменты, вызывающие глюконеогенез в печени. Таким образом, единичный химический сигнал - глюкагон - мобилизует энергетические резервы посредством нескольких путей метаболизма.

Преобразование разнообразных сигналов в единую метаболическую программу. Поскольку содержащаяся в печени аденилатциклаза может стимулироваться адреналином (действующим через b-адренорецепторы) так же, как и глюкагоном, циклический АМФ позволяет двум гормонам, обладающим различным химическим строением, регулировать углеводный обмен в печени. Если бы не существовало вторичного медиатора, то каждый из регулирующих ферментов, участвующих в мобилизации углеводов печени, должен был бы обладать способностью распознавать как глюкагон, так и адреналин.

Рис. 67-2. Молекулярный механизм регуляции синтеза циклического АМФ гор­монами, гормональными рецепторами и Г-белками. Аденилатциклаза (АЦ) в ее активной форме (АЦ +) превращает АТФ в циклический АМФ (цАМФ) и пирофосфат (ПФи). Активация и ингибирование АЦ опосредуются формально идентичными системами, показанными в левой и правой частях рисунка. В каждой из этих систем Г-белок колеблется между неактивным состоянием, будучи связанным с ГДФ (Г-ГДФ), и активным состоянием, будучи связанным с ГТФ (Г 4 "-ГТФ); только белки, находящиеся в активном состоянии, могут стимулировать (Гс) или ингибировать (Ги) активность АЦ. Каждый комплекс Г-ГТФ обладает внут­ренней активностью ГТФазы, которая превращает его в неактивный комплекс Г-ГДФ. Чтобы вернуть Г-белок в его активное состояние, стимулирующие или ингибирующие комплексы гормон-рецептор (НсРс и НиРи соответственно) способствуют замене ГДФ на ГТФ в месте связывания Г-белка с гуаниннуклеотидом. В то время как комплекс ГиР требуется для начальной стимуляции или ингибирования АЦ белками Гс или Гц, гормон может отсоединиться от рецептора независимо от регуляции АЦ, которая, на­против, зависит от длительности состояния связывания между ГТФ и соответствующим Г-белком, регулируемого его внутренней ГТФазой. Два бактериальных токсина регу­лируют активность аденилатциклазы, катализируя АДФ-рибозилирование Г-белков (см. текст). АДФ-рибозилирование Г с холерным токсином угнетает активность его ГТФазы, стабилизируя Гс в его активном состоянии и тем самым увеличивая синтез циклического АМФ. В противоположность этому АДФ-рибозилирование Ги коклюшным токсином предотвращает его взаимодействие с комплексом гнири и стабилизирует Ги в связанном с ГДФ неактивном состоянии; в результате этого коклюшный токсин предотвращает гормональное угнетение АЦ.

Координированная регуляция различных клеток и тканей первичным медиатором. В случае классической реакции на стресс «сражайся или беги» катехоламины связываются с b-адренорецепторами, расположенными в сердце, жировой ткани, кровеносных сосудах и многих других тканях и органах, включая печень. Если бы циклический АМФ не опосредовал большинство реакций на действие b-адренергических катехоламинов (например, увеличение частоты сердечных сокращений и сократимости миокарда, расширение сосудов, снабжающих кровью скелетную мускулатуру, мобилизация энергии из запасов углеводов и жиров), то совокупность огромного количества отдельных ферментов в тканях должна была бы обладать специфическими местами связы­вания для регуляции катехоламинами.

Аналогичные примеры биологических функций циклического АМФ можно было бы привести и в отношении других первичных медиаторов, приведенных в табл. 67-1. Циклический АМФ действует как внутриклеточный медиатор для каждого из этих гормонов, обозначая их присутствие на поверхности клетки. Подобно всем эффективным медиаторам, циклический АМФ обеспечивает про­стой, экономичный и высокоспециализированный путь передачи разнородных и сложных сигналов.

Гормончувствительная аденилатциклаза. Основным ферментом, опосредующим соответствующие эффекты этой системе, является Гормончувствительная аденилатциклаза. Этот фермент состоит по меньшей мере из пяти классов разделимых белков, каждый из которых внедрен в жировую двухслойную плазмати­ческую мембрану (рис. 67-2).

На наружной поверхности клеточной мембраны обнаруживаются два класса гормональных рецепторов, Рс и Ри. Они содержат специфические участки рас­познавания для связывания гормонов, стимулирующих (Нс) или ингибирующих (Ни) аденилатциклазу.

Каталитический элемент аденилатциклазы (АЦ), обнаруживаемый на цитоплазматической поверхности плазменной мембраны, превращает внутриклеточный АТФ в циклический АМФ и пирофосфат. На цитоплазматической поверхности присутствуют также два класса гуаниннуклеотидсвязывающих регулирующих белков. Эти белки, Гс и Ги, опосредуют стимулирующее и ингибирующее дей­ствие, воспринимаемое рецепторами Рс и Ри соответственно.

Как стимулирующая, так и угнетающая парные функции белков зависят от их способности связывать гуанозинтрифосфат (ГТФ) (см. рис. 67-2). Только ГТФ-связанные формы Г-белков регулируют синтез циклического АМФ. Ни сти­муляция, ни угнетение АЦ не являются постоянным процессом; вместо этого концевой фосфор ГТФ в каждом комплексе Г-ГТФ в конце концов гидролизируется, а Гс-ГДФ или Ги - ГДФ не могут регулировать АЦ. По этой причине стойкие процессы стимуляции или угнетения аденилатциклазы требуют непрерыв­ного превращения Г-ГДФ в Г-ГТФ. В обоих проводящих путях комплексы гормон - рецептор (НсРс или НиРи) усиливают превращение ГДФ в ГТФ. Этот рециркуляционный во временном и пространственном отношениях процесс отде­ляет связывание гормонов с рецепторами от регуляции синтеза циклического АМФ, используя энергетические запасы в концевой фосфорной связи ГТФ для усиления действия комплексов гормон - рецептор.

Эта схема объясняет, каким образом несколько разных гормонов могут стимулировать или угнетать синтез циклического АМФ в пределах единичной клетки. Поскольку рецепторы по своим физическим характеристикам отличаются от аденилатциклазы, совокупность рецепторов, находящихся на поверхности клетки, определяет специфическую картину ее чувствительности к внешним химическим сигналам. Отдельная клетка может иметь три или более различных рецептора, воспринимающих угнетающее действие, и шесть или более отличаю­щихся от них рецепторов, воспринимающих стимулирующее действие. И напро­тив, все клетки, по-видимому, содержат сходные (возможно, идентичные) ком­поненты Г и АЦ.

Молекулярные компоненты гормончувствительной аденилатциклазы обеспе­чивают контрольные точки для изменения чувствительности данной ткани к гор­мональной стимуляции. Как Р, так и Г-компоненты служат решающими факто­рами физиологической регуляции чувствительности к гормонам, и изменения Г-белков рассматривают как первичное поражение, возникающее при четырех обсуждаемых ниже заболеваниях.

Регуляция чувствительности к гормонам (см. также гл. 66). Повторное введение какого-либо гормона или лекарственного средства, как правило, вызывает постепенное повышение резистентности к их действию. Этот феномен носит разные названия: гипосенсибилизация, рефрактерность, тахифилаксия или толерантность.

Гормоны или медиаторы могут вызвать развитие гипосенсибилизации, яв­ляющейся рецепторспецифичной, или «гомологичной». Например, введение b-адренергических катехоламинов вызывает специфическую рефрактерность миокарда к повторному введению этих аминов, но не к тем лекарственным средствам, которые не действуют через b-адренорецепторы. Рецепторспецифическая гипо­сенсибилизация включает в себя по меньшей мере два отдельных механизма. Первый из них, быстро развивающийся (в течение нескольких минут) и быстро обратимый при удалении введенного гормона, функционально «расцепляет» ре­цепторы и Гс-белок и, следовательно, снижает их способность стимулировать аденилатциклазу. Второй процесс связан с фактическим уменьшением числа рецепторов на клеточной мембране - процесс, называемый рецептороуменьшающей регуляцией. Процесс рецептороуменьшающей регуляции для своего развития требует несколько часов и является труднообратимым.

Процессы гипосенсибилизации представляют собой часть нормальной регу­ляции. Устранение нормальных физиологических стимулов может привести к повышению чувствительности ткани-мишени к фармакологической стимуляции, как это происходит при развитии гиперчувствительности, вызванной денервацией. Потенциально важная клиническая корреляция такого увеличения числа рецепто­ров может развиться у больных при внезапном прекращении лечения анаприлином, являющимся b-адреноблокирующим средством. У таких больных часто наблюдаются преходящие признаки повышенного симпатического тонуса (тахи­кардия, повышение артериального давления, головные боли, дрожание и т. д.) и могут развиться симптомы коронарной недостаточности. В лейкоцитах пери­ферической крови больных, получающих анаприлин, обнаруживают повышенное число b-адренорецепторов, и число этих рецепторов медленно возвращается к нормальным значениям при прекращении приема препарата. Хотя более много­численные другие рецепторы лейкоцитов не опосредуют сердечно-сосудистые симптомы и явления, возникающие в случае отмены анаприлина, рецепторы в миокарде и других тканях, вероятно, претерпевают такие же изменения.

Чувствительность клеток и тканей к гормонам может регулироваться и «гетерологичным» путем, т. е. когда чувствительность к одному гормону регули­руется другим гормоном, действующим через иной набор рецепторов. Регуляция чувствительности сердечно-сосудистой системы к b-адренергическим аминам гормонами щитовидной железы является самым известным клиническим приме­ром гетерологичной регуляции. Гормоны щитовидной железы вызывают накопле­ние избыточного количества b-адренорецепторов в миокарде. Это увеличение. числа рецепторов частично объясняет повышенную чувствительность сердца больных гипертиреозом к катехоламинам. Однако тот факт, что у эксперимен­тальных животных увеличение числа b-адренорецепторов, вызываемое введением гормонов щитовидной железы, недостаточно для того, чтобы отнести на его счет повышение чувствительности сердца к катехоламинам, позволяет предположить, что влиянию гормонов щитовидной железы подвержены также и компоненты реакции на гормоны, действующие дистальнее рецепторов, возможно включающие в себя Гс, но не ограничивающиеся этими субъединицами. К числу других при­меров гетерологичной регуляции относятся контролирование эстрогеном и прогестероном чувствительности матки к расслабляющему действию b-адренергических агонистов и повышенная реактивность многих тканей по отношению к адреналину, вызываемая глюкокортикоидами.

Второй тип гетерологичной регуляции заключается в угнетении гормональной стимуляции аденилатциклазы веществами, действующими через Ри и Ги, как отмечалось выше. Ацетилхолин, опиаты и a-адренергические катехоламины дейст­вуют через отличные друг от друга классы воспринимающих ингибирующее действие рецепторов (мускариновые, опиатные и a-адренорецепторы), снижая чувствительность аденилатциклазы определенных тканей к стимулирующему действию других гормонов. Хотя клиническое значение гетерологичной регуляции этого типа не установлено, угнетение синтеза циклического АМФ морфином и другими опиатами могло бы быть причиной некоторых аспектов толерантности к препаратам этого класса. Аналогично устранение такого угнетения может играть определенную роль в развитии синдрома, следующего за прекращением введения опиатов.

Регулированием бессознательных действий в организме занимается вегетативная (автономная) нервная система, ответственная за рост человека, нормализацию кровяной циркуляции, расход энергии, вырабатываемой в лёгких и кишечнике. Также прослеживается её прямая связь с состоянием сердечного ритма. Она разделена на две составляющие, отвечающие за полярные действия, одна работает с процессами активации, другая с их торможением.

Определение

Парасимпатическая нервная система, являясь одной из составляющих автономной системы, обеспечивает функцию дыхания, регулировку сердцебиения, расширение кровеносных сосудов, контроль пищеварительных процессов, а также активацию иных, не менее важных механизмов.

Эта система работает на расслабление организма, восстанавливая баланс после нагрузок физического или эмоционального характера.

На бессознательном уровне, с её участием, уменьшается тонус мышц, нормализуется пульс, сужаются стенки сосудов. В качестве медиатора парасимпатической системы выступает ацетилхолин, действующий противоположно адреналину.

Парасимпатические центры занимают пространства головного и спинного мозга, это способствует наискорейшей передаче импульсов, которые служат регуляции работоспособности внутренних органов и систем. Каждый из нервных импульсов в ответе за конкретную часть тела, которая отзывается на его возбуждение.

Околомоторный, лицевой, блуждающий, глоссофарингеальный и тазовые висцеральные нервы причисляются к парасимпатическим нервам. Нервные волокна выполняют локальные функции, объединяясь между собой, как, например, входящие в состав парасимпатической системы сплетения интрамуральной нервной системы, локализованной преимущественно в отделах пищеварительного тракта. К ним относятся сплетения:

  • мышечно-кишечное, находящееся между продольной и кольцевой мускулатурой пищеварительной трубы;
  • подслизистое, разрастающееся в сетку желёз и ворсинок.

Расположение парасимпатических нервных сплетений определяет зону ответственности отдела системы. Например, сплетения, находящиеся в тазовой области, занимаются физической активностью. Расположенные в пищеварительном тракте – отвечают за то, как выделяется желудочный сок и работает перистальтика кишечника.

Помимо , гипоталамуса, и эпифиза, парасимпатические центры локализуются в нервных ядрах затылочной зоны, поясничных, чревных и грудных нервных сплетениях. Центры, находящиеся в сердечных сплетениях, ответственны за толчки миокарда. Парасимпатические волокна, начинающиеся в отделе среднего мозга, являются составляющей частью глазодвигательного нерва. Их воздействия над гладкой мускулатурой глаза, приводят к сужению зрачка и влияют на ресничную (аккомодационную) мышцу.

Каменистый, языкоглоточный нервы и нерв под названием «барабанная струна» базируются на парасимпатических волокнах и оказывают влияние на слёзную, слюнную, околоушную железу и железы слизистой оболочки носа и нёба.

Волокна, являющиеся основной массой блуждающего нерва, также относятся к числу парасимпатических. Они занимаются регулированием работы всех внутренних органов грудной и брюшной полости, за исключением области малого таза.

В крестцовом отделе позвоночника также есть агенты парасимпатического отдела . Парный тазовый нерв, например, который активно участвует в формировании подчревного сплетения и занимается иннервацией мочевого пузыря, внутренних половых органов и нижних отделов толстого кишечника.

Функции

Задачей этой системы считается функционирование всех частей тела в состоянии покоя. Первоочередно это значит, что идёт активное расслабление и восстановление организма после любых нагрузок, будь они физическими или эмоциональными. Для этого производится воздействие на тонус гладких мышц и оказывается влияние на кровеносную систему и работу сердца, в частности, на:

  • нормализацию артериального давления и кровяной циркуляции;
  • проницаемость и расширение сосудов;
  • сокращения миокарда;
  • замедление сердцебиения;
  • восстановление оптимальных показателей глюкозы в крови.

Выполнение важной задачи по очищению организма включает в себя настройку процессов чихания, кашля и рвоты, а также регуляцию опорожнения жёлчного и мочевого пузыря и дефекация, за счёт расслабления сфинктеров.

Также под влияние попадают:

  • внутренняя секреция отдельных желёз, в том числе слюноотделение, слезотечение;
  • стимуляция переваривания пищи;
  • сексуальное возбуждение;
  • сужение зрачков, снятие напряжения с глазного нерва;
  • восстановление спокойного дыхания за счёт сужения бронхов;
  • снижение скорости передачи нервных импульсов.

Другими словами, фронт работ парасимпатической системы охватывает многие отделы организма, но не все. В список исключений входят, например, гладкомышечные оболочки кровеносных сосудов, мочеточники, гладкая мускулатура селезёнки.

Парасимпатический отдел несет ответственность за безостановочную работу таких систем, как: сердечно-сосудистая, мочеполовая и пищеварительная.

Помимо этого, оказывается воздействие на печень, щитовидку, почки и поджелудочную железу. У парасимпатической системы множество различных функций, выполнение которых обеспечивает комплексное воздействие на организм.

Взаимодействие отделов ВНС

Процесс работы вегетативной системы напрямую связан с поступлением из мозговых центров ответных импульсов, приводящих к регулированию тонуса сосудов, используемых для перемещения крови и лимфы по организму. Тесная связь и парасимпатического отделов обусловлена тем, что один работает с напряжением организма в целом и его органов в частности, а другой - с их расслаблением. Это значит, что функционирование отделов зависит от бесперебойности работы друг друга.

Сравнение двух отделов показывает очевидное различие между ними, связанное с противоположностью направленности их воздействия. Симпатический отдел занимается пробуждением организма, реакцией на стресс и эмоциональным откликом, то есть активацией внутренних органов, в то время как фаза работы парасимпатической нервной системы связана с торможением этих явлений, включая расслабление после физических и эмоциональных нагрузок, с целью восстановления нормального состояния организма. В связи с этим присутствует и отличие в медиаторах, осуществляющих перемещение нервных импульсов по синапсам.

Симпатическая система использует норадреналин, парасимпатическая – ацетилхолин.

Также имеется различие в удалённости расположения ганглий: симпатические базируются в отдалении, а локализацией парасимпатических преимущественно являются интрамуральные узелки в стенках управляемых органов. От клеток этих узлов вглубь органа направлено множество коротких постганглионарных волокон.

Совместная работа составляющих вегетативной системы лежит в основе чёткой работы органов, реагирующих на любые изменения, которые случаются с организмом, и приспосабливающих свою деятельность к новым условиям. При сбое баланса в совместной работы этих систем, необходимо лечение.

Парасимпатическая нервная система осуществляет сужение бронхов, замедление и ослабление сердечных сокращений; су­жение сосудов сердца; пополнение энергоресурсов (синтез гликогена в печени и усиление процессов пищеварения); усиление процессов мочеобразования в почках и обеспечение акта мочеиспускания (сокращение мышц мочевого пузыря и расслабление его сфинктера) и др. Пара­симпатическая нервная система преимущественно оказывает пусковые влияния: сужение зрачка, бронхов, включение деятельности пи­щеварительных желез и т. п.

Деятельность парасимпатического отдела вегетативной нервной системы направлена на текущую регуляцию функционального со­стояния, на поддержание постоянства внутренней среды - гомеостаза. Парасимпатический отдел обеспечивает восстановление различных физиологических показателей, резко измененных после напряженной мышечной работы, пополнение израсходованных энергоресурсов. Медиатор парасимпатической системы - ацетилхолин, снижая чувствительность адренорецепторов к действию адреналина и норадреналина, оказывает определенное антистрессорное влияние.

Рис. 6. Вегетативные рефлексы

Влияние положения тела на частоту сердечных сокращений

(уд./мин). (По.МогендовичМ.Р., 1972)

3.6.4. Вегетативные рефлексы

Через вегетативные симпати­ческие и парасимпатические пути ЦНС осуществляет некоторые вегетативные рефлексы, начинающиеся с различных ре­цепторов внешней и внутренней среды: висцеро-висцеральные (с внутренних органов на внутрен­ние органы - например, дыха­тельно-сердечный рефлекс); дермо-висцеральные (с кожных по­кровов - изменение деятельности внутренних органов при раздра­жении активных точек кожи, на­пример, иглоукалыванием, точеч­ным массажем); с рецепторов глаз­ного яблока - глазо-сердечный рефлекс Ашнера (урежение сердцебиений при надавлива­нии на глазные яблоки - пара­симпатический эффект); моторно-висцеральные- например, ортостэтическая проба (учащение сердцебиения при переходе из положения лежа в положение стоя - симпатический эф­фект) и др. (рис. 6). Они используются для оценки функционального состояния организма и особенно состояния вегетативной нервной си­стемы (оценки влияния симпатического или парасимпатического ее отдела).

11. ПОНЯТИЕ О НЕРВНО МЫШЕЧНОМ(ДВИГАТЕЛЬНОМ) АППАРАТЕ. ДВИГАТЕЛЬНЫЕ ЕДИНИЦЫ(ДЕ) И ИХ КЛАССИФИКАЦИЯ. ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ РАЗЛИЧНЫХ ТИПОВ ДЕ И ИХ КЛАССИФИКАЦИЯ. ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ РАЗЛИЧНЫХ ТИПОВ ДЕ.(ПОРОГ АКТИВАЦИИ,СКОРОСТЬ И СИЛА СОКРАЩЕНИЯ, УТОМЛЯЕМОСТЬ И ДР) Значение типа ДЕ при различных видах мышечной деятельности.

12. Мышечная композиция. Функциональные возможности разных типов мышечных волокон (медленные и быстрые). Их роль в проявлении мышечной силы, скорости и выносливости. Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мы­шечных волокон. Различают 3 типа мышечных волокон - медленные неутомляемые (I типа), быстрые неутомляемые или про­межуточные (11-а типа) и быстрые утомляемые (11-б типа).

Медленные волокна (1 типа), их обозначают также SO - Slow Oxydative (англ. - медленные окислительные) - это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснаб­жением, большим количеством митохондрий, запасов миоглобина и

с использованием окислительных процессов энергообразования (аэробные). Их, в среднем, у человека 50%. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при под­держании ненагрузочной статической работы, например, при сохра­нении позы.

Быстрые утомляемые волокна (11-б типа) или FG - Fast Glicolitic (быстрые гликолитические) используют анаэробные процессы энер­гообразования (гликолиз). Они менее возбудимы, включаются при больших нагрузках и обеспечивают быстрые и мощные сокращения мышц. Зато эти волокна быстро утомляются. Их примерно 30%. Во­локна промежуточного типа (П-а) - быстрые неутомляемые, окис­лительные, их около 20%. В среднем, для разных мышц характерно различное соотношение медленных неутомляемых и быстрых утом­ляемых волокон. Так, в трехглавой мышце плеча преобладают быст­рые волокна (67%) над медленными (33%), что обеспечивает скоростно-силовые возможности этой мышцы (рис. 14), а для более медлен­ной и выносливой камбаловидной мышцы характерно наличие 84% медленных и всего 16% быстрых волокон (Салтан Б., 1979).

Однако, состав мышечных волокон в одной и той же мышце имеет огромные индивидуальные различия, зависящие от врожденных типо­логических особенностей человека. К моменту рождения человека его мышцы содержат лишь медленные волокна, но под влиянием не­рвной регуляции устанавливается в ходе онтогенеза генетически за­данное индивидуальное соотношение мышечных волокон разного типа. По мере перехода от зрелого возраста к пожилому число быст­рых волокон у человека заметно снижается и, соответственно, умень­шается мышечная сила. Например, наибольшее количество быстрых волокон в наружной головке 4-х главой мышцы бедра мужчины (около 59-63%) отмечается в возрасте 20-40 лет, а в возрасте 60-65 лет их число почти на 1/3 меньше (45%).

Рис. 14. Состав мышечных волокон в разных мышцах

Медленные - черным цветом; быстрые - серым

Количество тех или других мышечных волокон не изменяется в процессе тренировки. Возможно только нарастание толщины (гипер­трофия) отдельных волокон, а также некоторое изменение свойств промежуточных волокон. При направленности тренировочного про­цесса на развитие силы происходит нарастание объема быстрых воло­кон, что и обеспечивает повышение силы тренируемых мышц.

Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

Существенное значение имеют механические условия работы мышцы -точка приложения ее силы и точка прило­жения сопротивления (поднимаемого груза). Например, при сгиба­нии в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга су­хожилий - 500 кг.

Между силой и скоростью сокращения мышцы существует опре­деленное соотношение, имеющее вид гиперболы (соотношение сила - скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения, и наоборот, с нараста­нием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мы­шечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и, соответствен­но, потребляется больше энергии АТФ. Во время сокращения мы­шечных волокон в 1 с происходит примерно от 5 до 50 циклов при­крепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).

13. ОДИНОЧНОЕ И ТЕТАНИЧЕСКОЕ СОКРАЩЕНИЕ МЫШЕЧНОГО ВОЛОКНА. ЭЛЕКТРОМИОГРАММА. При единичном надпороговом раздражении двигательного нерва или самой мышцы возбуждение мышечного волокна сопровождается

одиночным сокращением. Эта форма механической реакции состоит из 3 фаз: латентного или скрытого периода, фазы сокраще­ния и фазы расслабления. Самой короткой фазой является скрытый период, когда в мышце происходит электромеханическая передача. Фаза расслабления обычно в 1.5-2 раза более продолжительна, чем фаза сокращения, а при утомлении затягивается на значительное время.

Если интервалы между нервными импульсами короче, чем дли­тельность одиночного сокращения, то возникает явление супер­позиции - наложение механических эффектов мышечного во­локна друг на друга и наблюдается сложная форма сокращения - тетанус. Различают 2 формы тетануса - зубчатый тетанус, возникающий при более редком раздражений, когда происходит по­падание каждого следующего нервного импульса в фазу расслабле­ния отдельных оди ночных сокращений, и сплошной или гладкий те­танус, возникающий при более частом раздражении, когда каждый следующий импульс попадает в фазу сокращения (рис. 11). Таким образом, (в некоторых границах) между частотой импульсов возбуж­дения и амплитудой сокращения волокон ДЕ существует определенное соотношение: при небольшой частоте (например, 5-8 имп. в 1с)

Рис. П. Одиночное сокращение, зубчатый и сплошной тетанус камбаловидпой мышцы человека (по: Зимкин Н.В. и др., 1984). Верхняя кривая - сокращение мышцы, нижняя - отметка раздражения мышцы, справа указана частота раздражени я

возникают одиночные сокращения, при увеличении частоты (15-20 имп. в 1с) - зубчатый тетанус, при дальнейшем нарастании частоты (25-60 имп. в 1 с) - гладкий тетанус. Одиночное сокращение - более слабое и менее утомительное, чем тетаническое. Зато тетанус обеспе­чивает в несколько раз более мощное, хотя и кратковременное сокра­щение мышечного волокна.

Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспе­чении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно (рис. 12), поддерживая общее напряжение мышцы на заданном уровне (например, при беге на длинные и сверх­длинные дистанции). При этом отдельные ДЕ могут развивать как одиночные, так и тетанические сокращения, что зависит от частоты нервных импульсов. Утомление в этом случае развивается медленно, так как, работая по очереди, ДЕ в промежутках между активацией успевают восстанавливаться. Однако для мощного кратковременного усилия (например, поднятия штанги) требуется синхронизация ак­тивности отдельных ДЕ, т. е. одновременное возбуждение практи­чески всех ДЕ. Это, в свою очередь, требует одновременной активации

Рис. 12. Различные режимы работы двигательных единиц (ДЕ)

соответствующих нервных центров и достигается в результате длительной тренировки. При этом осуществляется мощное и весьма утомительное тетаническое сокращение.

Амплитуда сокращения одиночного волокна не зависит от силы надпорогового раздражения (закон «Все или ничего»). В отличие от этого, при нарастании силы надпорогового раздражения сокращение целой мышцы постепенно растет до максимальной амплитуды.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге за­регистрировать одиночные потенциалы действия отде­льных Д Е. В случае же значительных напряжений потенциалы действия многих ДЕ алгебраически суммируются и возникает сложная интегрированная кривая записи электрической активнос­ти целой мышцы - электромиограмма (ЭМГ).

Форма ЭМГ отражает характер работы мышцы: при статичес­ких усилиях она имеет непрерывный вид, а при динамической ра­боте - вид отдельных пачек импульсов, приуроченных, в основ­ном, к начальному моменту сокращения мышцы и разделенных пе­риодами «электрического молчания». Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при цикличес­кой работе (рис. 13). У маленьких детей и неадаптированных к такой работе лиц четких периодов отдыха не наблюдается, что отражает не­достаточное расслабление мышечных волокон работающей мышцы.

Чем больше внешняя нагрузка и cилa сокращения мышцы, тем выше амплитуда ее ЭМГ. Это связано с увеличением частоты нервных им­пульсов, вовлечением большего числа ДЕ в мышце и синхронизацией

Рис. 13. Электромиограмма мышц-антагонистов при циклической работе

их активности. Современная многоканальная аппаратура позволяет производить одновременную регистрацию ЭМГ многих мышц на раз­ных каналах. При выполнении спортсменом сложных движений мож­но видеть на полученных ЭМГ кривых не только характер активно­сти отдельных мышц, но и оценить моменты и порядок их включения или выключения в различные фазы двигательных актов. Записи ЭМГ, полученные в естественных условиях двигательной деятельности, можно передавать к регистрирующей аппаратуре по телефону или радиотелеметрически. Анализ частоты, амплитуды и формы ЭМГ (на­пример, с помощью специальных компьютерных программ) позволяет получить важную информацию об особенностях техники выполня­емого спортивного упражнения и степени ее освоения обследуемым спортсменом.

По мере развития утомления при той же величине мышечного уси­лия амплитуда ЭМГ нарастает. Это связано с тем, что снижение сократительной способности утомленных ДЕ компенсируется не­рвными центрами вовлечением в работу дополнительных ДЕ, т. е. путем увеличения количества активных мышечных волокон. Кроме того, усиливается синхронизация активности ДЕ, что также повы­шает амплитуду суммарной ЭМГ.

14. Механизм сокращения и расслабления мышечного волокна. Теория скольжения. Роль саркоплазматического ретикулума и ионов кальция в сокращении. При произвольной внутренней команде сокращение мышцы че­ловека начинается примерно через 0.05 с (50 мс). За это время мотор­ная команда передается от коры больших полушарий к мотонейро­нам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора пре­одолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный им пульс вызывает перемещение синаптических пузырьков к преси­наптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мем­брану чрезвычайно кратковременно, после чего он разрушается ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо­вания запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхоли­на превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего на­рушается проведение возбуждения через нервно-мышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся всинаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды - потенциал концевой пластинки (ПКП).

При достаточной частоте нервных импульсов ПКП достигает по­рогового значения и на мышечной мембране развивается мышечный потенциал действия. Он (со скоростью 5 ) распростра­няется вдоль по поверхности мышечного волокна и заходите поперечные

трубочки внутрь волокна. Повышая проницаемость клеточ­ных мембран, потенциал действия вызывает выход из цистерн и тру­бочек саркоплазматического ретикулума ионов Са, которые прони­кают в миофибриллы, к центрам связывания этих ионов на молеку­лах актина.

Под влиянием Садлинные молекулы тропомиозина проворачи­ваются вдоль оси и скрываются в желобки между сферическими мо­лекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей ак­тина вдоль нитей миозина с обоих концов саркомера к его центру, т. е. механическую реакцию мышечного волокна (рис. 10).

Энергия гребкового движения одного мостика производит пере­мещение на 1 % длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са. Такой процесс происходит в ре­зультате активации в этот момент молекул миозина. Миозин приоб­ретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению

Рис. 10. Схема электромеханической связи в мышечном волокне

На А: состояние покоя, на Б - возбуждение и сокращение

да - потенциал действия, мм - мембрана мышечного волокна,

п _ поперечные трубочки, т - продольные трубочки и цистерны с ионами

Са , а - тонкие нити актина, м - толстые нити миозина

с утолщениями (головками) на концах. Зет-мембранами ограничены

саркомеры миофибрилл. Толстые стрелки - распространение потенциала

действия при возбуждении волокна и перемещение ионов Саиз цистерн

и продольных трубочек в миофибриллы, где они содействуют образованию

мостиков между нитями актином и миозином и скольжение этих нитей

(сокращение волокна) за счет гребковых движений головок миозина.

имеющихся мостиков и образованию в присутствии Сановых мос­тиков на следующем участке актиновой нити. В результате повторе­ния подобных процессов многократного образования и распада мос­тиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала дей­ствия в поперечных трубочках, а максимальное напряжение мышеч­ного волокна - через 20 мс.

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромехани­ческой связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.

Расслабление мышечного волокна связано с работой особого механизма - «кальциевого насоса», который обеспечивает откачку ионов Саиз миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

15. Механизм регуляции силы сокращения мышц (число активных ДЕ, частота импульсации мотонейронов, синхронизация сокращения мышечных волокон разных ДЕ во времени). Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

1) увеличением числа активных ДЕ - это механизм вовлечения или рекрутирования ДЕ (сначала происходит вовлечение медленных и более возбудимых ДЕ, затем - высокопо­роговых быстрых Д Е);

2) увеличением частоты нервных импульсов, в результате чего происходит переход от слабых одиночных сокраще­ний к сильным тетаническим сокращениям мышечных волокон;

3) увеличением синхронизации ДЕ, при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех ак­тивных мышечных волокон.

Анатомия иннервации вегетативной нервной системы. Системы: симпатическая (красным) и парасимпатическая (синим)

Часть автономной нервной системы , связанная с симпатической нервной системой и функционально ей противопоставляемая. В парасимпатической нервной системе ганглии (нервные узлы) расположены непосредственно в органах или на подходах к ним, поэтому преганглионарные волокна длинные, а постганглионарные - короткие. Термин парасимпатическая - т. е. околосимпатическая был предложен Д. Н. Ленгли в конце XIX - начале XX века.

Эмбриология

Эмбриональным источником для парасимпатической системы является ганглиозная пластинка. Парасимпатические узлы головы образуются путем миграции клеток из среднего и продолговатого мозга. Периферические парасимпатические ганглии пищеварительного канала происходят из двух участков ганглиозной пластинки - «вагусного» и пояснично-крестцового.

Анатомия и морфология

У млекопитающих в парасимпатической нервной системе выделяют центральный и периферический отдел. Центральный включает ядра головного мозга и крестцового отдела спинного мозга .

Основную массу парасимпатических узлов составляют мелкие ганглии, диффузно разбросанные в толще или на поверхности внутренних органов. Для парасимпатической системы характерно наличие длинных отростков у преганглионарных нейронов и чрезвычайно коротких - у постганглионарных.

Головной отдел подразделяют на среднемозговую и продолговатомозговую части. Среднемозговая часть представлена ядром Эдингера-Вестфаля, расположенным вблизи передних бугров четверохолмия на дне Сильвиева водопровода. В продолговатомозговую часть входят ядра VII, IX, X черепно-мозговых нервов.

Преганглионарные волокна от ядра Эдингера-Вестфаля выходят в составе глазодвигательного нерва, и заканчиваются на эффекторных клетках ресничного ганглия (gangl. ciliare ). Постганлионарные волокна вступают в глазное яблоко и идут к аккомодационной мышце и сфинктеру зрачка .

VII (лицевой) нерв тоже несет парасимпатическую компоненту. Через поднижнечелюстной ганглий он иннервирует подчелюстную и подъязычную слюнные железы, а переключаясь в крылонебном ганглии - слезные железы и слизистую носа.

Волокна парасимпатической системы также входят в состав IX (языкоглоточного) нерва. Через околоушной ганглий он иннервирует околоушные слюнные железы.

Основным парасимпатическим нервом является блуждающий нерв (N. vagus ), который наряду с афферентными и эфферентными парасимпатическими волокнами включает чувствительные и двигательные соматические, и эфферентные симпатические волокна. Он иннервирует практически все внутренние органы до ободочной кишки.

Ядра спинномозгового центра располагаются в области II-IV крестцовых сегментов, в боковых рогах серого вещества спинного мозга. Они отвечают за иннервацию ободочной кишки и органов малого таза.

Физиология

Преимущественно нейроны парасимпатической нервной системы являются холинергическими . Хотя известно, что наряду с основным медиатором постганглионарные аксоны одновременно выделяют пептиды (например, вазоактивный интестинальный пептид (VIP)). Кроме того, у птиц в ресничном ганглии наряду с химической передачей присутствует и электрическая. Известно, что парасимпатическая стимуляция в одних органах вызывает тормозное действие, в других - возбуждающий ответ. В любом случае действие парасимпатической системы противоположно симпатической (исключение - действие на слюнные железы, где и симпатическая, и парасимпатическая нервная система вызывают активацию желез).

Парасимпатическая нервная система иннервирует радужную оболочку , слезную железу, подчелюстную и подъязычную железу, околоушную железу, легкие и бронхи , сердце (уменьшение частоты и силы сердечных сокращений), пищевод , желудок , толстую и тонкую кишку (усиление секреции железистых клеток). Сужает зрачок , усиливает секрецию сальных и других желез, сужает коронарные сосуды, улучшает перистальтику . Парасимпатическая нервная система не иннервирует потовые железы и сосуды конечностей.

См. также

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Парасимпатическая нервная система" в других словарях:

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - см. Вегетативная н. с. Большой психологический словарь. М.: Прайм ЕВРОЗНАК. Под ред. Б.Г. Мещерякова, акад. В.П. Зинченко. 2003. Парасимпатическая нервная система … Большая психологическая энциклопедия

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА, одна из двух частей АВТОНОМНОЙ НЕРВНОЙ СИСТЕМЫ, вторая часть СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. Они обе задействованы в работе ГЛАДКИХ МЫШЦ. Парасимпатическая нервная система контролирует мышцы, которые… … Научно-технический энциклопедический словарь

    Большой Энциклопедический словарь

    - (от пара... и греч. sympathes чувствительный, восприимчивый к влиянию), часть вегетативной нервной системы, ганглии к рой расположены в непосредств. близости от иннервируемых органов или в их стенке. У млекопитающих П. н. с. состоит из… … Биологический энциклопедический словарь

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА, см. Вегетативная нервная система … Большая медицинская энциклопедия

    Часть вегетативной нервной системы, включающая: нервные клетки продолговатого мозга, среднего мозга и крестцового отдела спинного мозга, отростки которых направляются к внутренним органам; нервные ганглии (узлы) во внутренних органах и на их… … Энциклопедический словарь

    Парасимпатическая нервная система - (рarasympathetic nervous system) – группа нервных центров и волокон вегетативной нервной системы, обеспечивающая, наряду с симпатической нервной системой, нормальное функционирование внутренних органов. Парасимпатическая нервная система замедляет … Энциклопедический словарь по психологии и педагогике

    Часть вегетативной нервной системы (См. Вегетативная нервная система), ганглии которой расположены в непосредственной близости от иннервируемых органов или в них самих. Центры П. н. с. находятся в среднем и продолговатом мозге… … Большая советская энциклопедия

    - (см. пара...) часть вегетативной нервной системы, участвующая в регуляции деятельности внутренних органов (замедляет сердцебиение, стимулирует отделение пищеварительных соков и т. п.), активизирует процессы накопления энергия и веществ ср.… … Словарь иностранных слов русского языка

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - см. Вегетативная нервная система … Ветеринарный энциклопедический словарь