Мускулатуры, достигается соответствие механических параметров дыхания сопротивлению дыхательной системы, которое возрастает, 1. при уменьшении растяжимости легких, 2. сужении бронхов и голосовой щели, 3. набухании слизистой оболочки носа. Во всех случаях сегментарные рефлексы на растяжение усиливают сокращение межреберных мышц и мышц передней брюшной стенки. У человека импульсация с проприорецепторов дыхательных мышц участвует в формировании ощущения, возникающих при нарушении дыхания. 4.9 Роль хеморецепторов в регуляции дыхания Основное назначение регуляции внешнего дыхания заключается в поддержании оптимального газового состава артериальной крови - напряжения О2, напряжения СО2, и, тем самым, в значительной мере - концентрации водородных ионов. У человека относительное постоянство напряжения газов крови сохраняется даже при физической работе, когда их потребление возрастает в несколько раз, так как при работе вентиляция легких увеличивается пропорционально интенсивности метаболических процессов. Избыток СО2, и недостаток О2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О2 и СО2, в альвеолах и в артериальной крови почти не изменяется. 81 Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО2. При вдыхании газовой смеси, содержащей 5-7% СО2, увеличение парциального давления СО2 в альвеолярном воздухе задерживает выведение СО2 из венозной крови. Связанное с этим повышение напряжения СО2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыхания, концентрация СО2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО2 в альвеолах на 0.2% вызывает увеличение вентиляции легких на 100%. Роль СО2, как главного регулятора дыхания, выявляется и в том, что недостаток содержания СО2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному прекращению дыхательных движения (апное). Это происходит, например, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО2, в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается. 4.10 Хемочувствительные рецепторы (центральные и периферические) Изменения газового состава внутренней среды организма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствительные рецепторы, расположенные непосредственно в 82 структурах продолговатого мозга ("центральные хеморецепторы") и в сосудистых рефлексогенных зонах ("периферические хеморецепторы"). Центральные хеморецепторы Центральными (медуллярными) хеморецепторами, постоянно участву- ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО2, и кислотно- щелочному состоянию омывающей их межклеточной мозговой жидкости. Хемочувствительные зоны имеются на переднебоковой поверхности продолговатого мозга около выходов подъязычного и блуждающего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация которых зависит от напряжения СО2, в артериальной крови. Спинномозговая жидкость отделена от крови гемато- + энцефалическим барьером, относительно непроницаемым для ионов Н и НСО3 , но свободно пропускающим молекулярный СО2. При повышении напряжения СО2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н, которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО2, и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейронов дыхательного центра продолговатого мозга. В результате дыхание становится более глубоким и вентиляция легких растет за счет увеличения объема каждого вдоха. 83 Снижение напряжения СО2, и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО2, (гиперкапнию) и ацидоз, а также в резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания. Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и месте деления (бифуркация) общей сонной артерии (каротидный синус), т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Хеморецепторы представляют собой самостоятельные образования, заключенные в особых тельцах - клубочках или гломусах, которые находятся вне сосуда. Афферентные волокна от хеморецепторов идут: от дуги аорты - в составе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называемом нерве Геринга. Первичные афференты синусного и аортального нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга. Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии 84 постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Уменьшение напряжения кислорода в артериальной крови ниже нормального уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов. Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посылаемых хеморецепторами каротидного тельца. Повышению напряжения СО2, артериальной крови и соответствующему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Артериальные хеморецепторы ответственны за начальную, быструю, фазу вентиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится напряжение СО2 области хемочувствительных мозговых структур. Гиперкапническая стимуляция артериальных хеморецепторов, подобно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО2 20-30 мм рт.ст и, следовательно, имеет место уже в условиях нормального напряжения СО2, в артериальной крови (около 40 мм рт.ст.). 4.11 Взаимодействие гуморальных стимулов дыхания На фоне повышенного артериального напряжения СО2 или увеличенной концентрации водородных ионов вентиляторная реакция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение парциального давления 85 углекислого газа в альвеолярном воздухе вызывают нарастание легочной вентиляции, превышающее арифметическую сумму ответов, которые вызывают эти факторы, действуя порознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъемом газообмена и требует адекватного ему усиления работы дыхательного аппарата. Установлено, что гипоксемия снижает порог и увеличивает интенсивность вентиляторной реакции на СО2. Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О2 во вдыхаемом воздухе (например, при дыхании газовыми смесями с низким содержанием О2, при пониженном атмосферном давлении в барокамере или в горах) возникает гипервентиляция, направленная на предупреждение значительного снижения парциального давления О2 в альвеолах и напряжения его в артериальной крови. При этом из-за гипервентиляции наступает снижение парциального давления СО2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО; во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О2 и СО2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, 86 напряжение О2 все же снижается, и возникает умеренная гипоксемия. В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморецепторов имеет жизненно важное значение для организма, например, в условиях дефицита О2. При гипоксии из-за снижения окислительного метаболизма в мозге чувствительность медуллярных хеморецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих условиях получает интенсивную стимуляцию от артериальных хеморецепторов, для которых гипоксемия является адекватным раздражителем. Таким образом, артериальные хеморецепторы служат "аварийным" механизмом реакции дыхания на изменение газового состава крови, и, прежде всего, на дефицит кислородного снабжения мозга. 4.12 Взаимосвязь регуляции внешнего дыхания и других функции организма Обмен газов в легких и тканях и приспособление его к запросам тканевого дыхания при различных состояниях организма обеспечивается путем изменения не только легочной вентиляции, но и кровотока как в самих легких, так и других органах. Поэтому механизмы нейрогуморальной регуляции дыхания и кровообращения осуществляются в тесном 87 взаимодействии. Рефлекторные влияния, исходящие из рецептивных полей сердечно- сосудистой системы (например, синокаротидной зоны), изменяют деятельность как дыхательного, так и сосудодвигательного центров. Нейроны дыхательного центра подвержены рефлекторным воздействиям со стороны барорецепторных зон сосудов - дуги аорты, каротидного синуса. Сосудо- двигательные рефлексы неразрывно связаны и с изменением функции дыхания. Повышение сосудистого тонуса и усиление сердечной деятельности, соответственно, сопровождаются усилением дыхательной функции. Например, при физической или эмоциональной нагрузке у человека обычно имеет место согласованное повышение минутного объема крови в большом и малом круге, артериального давления и легочной вентиляции. Однако, резкое повышение артериального давления вызывает возбуждение синокаротидных и аортальных барорецепторов, которое приводит к рефлекторному торможению дыхания. Понижение артериального давления, например, при кровопотере, приводит к увеличению легочной вентиляции, что вызвано, с одной стороны, снижением активности сосудистых барорецепторов, с другой - возбуждением артериальных хеморецепторов в результате местной гипоксии, вызванной уменьшением в них кровотока. Учащение дыхания возникает при повышении давления крови в малом круге кровообращения и при растяжении левого предсердия. На работу дыхательного центра оказывает влияние афферентация от периферических и центральных терморецепторов, особенно при резких и 88 внезапных температурных воздействиях на рецепторы кожи. Погружение человека в холодную воду, например, тормозит выдох, в результате чего возникает затяжной вдох. У животных, у которых отсутствуют потовые железы (например, у собаки), с повышением температуры внешней среды и ухудшением теплоотдачи увеличивается вентиляция легких за счет учащения дыхания (температурное полипное) и усиливается испарение воды через систему дыхания. Рефлекторные влияния на дыхательный центр весьма обширны, и практически все рецепторные зоны при их раздражении изменяют дыхание. Эта особенность рефлекторной регуляции дыхания отражает общий принцип нейронной организации ретикулярной формации ствола мозга, в состав которой входит и дыхательный центр. Нейроны ретикулярной формации, в том числе и дыхательные нейроны, имеют обильные коллатерали почти от всех афферентных систем организма, что и обеспечивает, в частности, разносторонние рефлекторные влияния на дыхательный центр. На деятельности нейронов дыхательного центра отражается большое количество различных неспецифических рефлекторных влияний. Так, болевые раздражения сопровождаются немедленным изменением дыхательной ритмики. Функция дыхания теснейшим образом связана с эмоциональными процессами: почти все эмоциональные проявления человека сопровождаются изменением функции дыхания; смех, плач - это измененные дыхательные движения. В дыхательный центр продолговатого мозга непосредственно поступает импульсация от рецепторов легких и рецепторов крупных сосудов, 89 т.е. рецептивных зон, раздражение которых имеет особенно существенное значение для регуляции внешнего дыхания. Однако, для адекватного приспособления функции дыхания к меняющимся условиям существования организма система регуляции должна обладать полной информацией о том, что происходит в организме и в окружающей среде. Поэтому для регуляции дыхания имеют значение все афферентные сигналы от разнообразных рецептивных полей организма. Вся эта сигнализация поступает не непосредственно в дыхательный центр продолговатого мозга, а в различные уровни головного мозга, и от них непосредственно может передаваться как на дыхательную, так и на другие функциональные системы. Различные центры головного мозга образуют с дыхательным центром функционально подвижные ассоциации, обеспечивающие полноценное регулирование дыхательной функции. В центральный механизм, регулирующий дыхание, включены разные уровни ЦНС. Значение для регуляции дыхания структур стволовой части мозга, в том числе варолиевого моста, среднего мозга, заключается в том, что эти отделы ЦНС получают и переключают на дыхательный центр проприоцептивную и интероцептивную сигнализацию, а промежуточный мозг - сигнализацию об обмене веществ. Кора больших полушарий, как центральная станция анализаторных систем, вбирает и обрабатывает сигналы от всех органов и систем, делая возможным адекватное приспособление различных функциональных систем, в том числе и дыхания, к тончайшим изменениям жизнедеятельности организма. Своеобразие функции внешнего дыхания заключается в том, что она в одной и той же мере и автоматическая, и произвольно управляемая. Человек 90

Давно установлено, что деятельность дыхательного центра зависит от состава крови, посту­пающей в мозг по общим сонным артериям.

Это было показано Фредериком (1890) в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестие сонные артерии и отдельно яремные вены" (рис. 158). После такого соединения и перевязки позвоночных артерий голова первой собаки снабжалась кровью второй собаки, голова второй собаки - кровью первой. Если у одной из собак, например у первой, перекрывали трахею и вызывали таким путем асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения двуокиси углерода и снижение напряжения кислорода, через некоторое время наступало апноэ. Это объясняется тем, что в сонную артерию первой собаки поступала кровь второй собаки, у которой в результате гипервентиляции в артериальной крови снижалось напряжение двуокиси углерода.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания, действуя не непосредственно на нейроны дыхательного центра. Возбудимость дыхательных нейронов, как и других нервных клеток, под влиянием этих факторов снижается. Следовательно, эти факторы усиливают деятельность дыхательного центра, оказывая влияние на специальные хеморецепторы. Имеется две группы хеморецепторов, регулирующих дыхание: периферические (артериальные) и центральные (медуллярные).

Артериальные хеморецепторы. Хеморецепторы, стимулируемые увеличением напря­жения двуокиси углерода и снижением напряжения кислорода, находятся в каротидных синусах и дуге аорты. Они расположены в специальных маленьких тельцах, обильно снабжаемых артериальной кровью. Важными для регуляции дыхания являются каротид-ные хеморецепторы. Аортальные хеморецепторы на дыхание влияют слабо и имеют боль­шее значение для регуляции кровообращения.

Каротидные тельца расположены в развилке общей сонной артерии на внутреннюю и наруж­ную. Масса каждого каротидного тельца всего около 2 мг. В нем содержатся относительно крупные эпителиоидные клетки I типа, окруженные мелкими интерстициальными клетками II типа. С клетками I типа контактируют окончания афферентных волокон синусного нерва (нерва Геринга), который является ветвью языкоглоточного нерва. Какие структуры тельца - клетки I или II типа либо нервные волокна - являются собственно рецепторами, точно не установлено.

Хеморецепторы каротидных и аортальных телец являются уникальными рецептор-ными образованиями, на которые гипоксия оказывает стимулирующее влияние. Аффе­рентные сигналы в волокнах, отходящих от каротидных телец, можно зарегистрировать и при нормальном (100 мм рт. ст.) напряжении кислорода в артериальной крови. При снижении напряжения кислорода от 80 до 20 мм рт. ст. частота импульсов увеличивается особенно значительно.

Кроме того, афферентные влияния каротидных телец усиливаются при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на данные хеморецепторы взаимно усиливается. Наоборот, в условиях гипероксии чувствительность хеморецепторов к дву­окиси углерода резко снижается.


Хеморецепторы телец особенно чувствительны к колебаниям газового состава крови. Степень их активации возрастает при колебаниях напряжения кислорода и двуокиси

Рис. 158. Схема опыта Фредерика с перекрестным крово­обращением.

углерода в артериальной крови даже в зависимости от фаз вдоха и выдоха при глубоком и редком дыхании.

Чувствительность хеморецепторов находится под нервным контролем. Раздражение эфферентных пара­симпатических волокон снижает чувствительность, а раздражение симпатических волокон повышает ее.

Хеморецепторы (особенно каротидных телец) инфор­мируют дыхательный центр о напряжении кислорода и двуокиси углерода в крови, направляющейся к мозгу.

Центральные хеморецепторы. После денервации каротидных и аортальных телец исключается усиление дыхания в ответ на гипоксию. В этих условиях гипоксия вызывает только снижение вентиляции легких, но зависимость деятельности дыхательного центра от напряжения двуокиси углерода сохраняется. Она обусловлена функцией центральных хеморецепторов.

Центральные хеморецепторы были обнаружены в продолговатом мозге латеральное пирамид (рис. 159). Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание. Если рН раствора увеличить, то дыхание ослабевает (у животных с денервированными каротидными тельцами останавливается на выдохе, наступает апноэ). То же присходит при охлаждении или обработке местными анестетиками этой по­верхности продолговатого мозга.

Хеморецепторы расположены в тонком слое мозгового вещества на глубине не более 0,2 мм. Обнаружены два рецептивных поля, обозначаемые буквам М и L. Между ними находится небольшое поле S. Оно нечувствительно к концентрации ионов Н 4 ", но при его разрушении исчезают эффекты возбуждения полей М и L. Вероятно, здесь проходят афферентные пути от сосудистых хеморецепторов к дыхательному центру.

В обычных условиях рецепторы продолговатого мозга постоянно стимулируются ионами Н 4 ", находящимися в спинномозговой жидкости. Концентрация Н" 1 " в ней зависит от напряжения двуокиси углерода в артериальной крови, она увеличивается при гиперкапнии.

Центральные хеморецепторы оказывают более сильное влияние на деятельность дыхательного центра, чем периферические. Они существенно изменяют вентиляцию лег­ких. Так, снижение рН спинномозговой жидкости на 0,01 сопровождается увеличением вентиляции легких на 4 л/мин. Вместе с тем центральные хеморецепторы реагируют на изменение напряжения дву­окиси углерода в артериальной крови позже (через 20-30 с), чем периферические хеморецепторы (через 3-5 с). Указанная особенность обусловлена тем, что для диффу­зии стимулирующих факторов из крови в спинномозговую жидкость и далее в ткань мозга необходимо время.

Сигналы, поступающие от центральных и периферических хеморецепторов, являют­ся необходимым условием периодической активности дыхательного центра и соответствия вентиляции легких газовому составу крови. Импульсы от центральных хеморецепторов усиливают возбуждение как инспираторных, так и экспираторных нейронов дыхатель­ного центра продолговатого мозга.

text_fields

text_fields

arrow_upward

Основное назначение регуляции внешнего дыхания заключается в поддержании оптималь­ ного газового состава артериальной крови - напряжения О 2 , на­пряжения СО 2 и, тем самым, в значительной мере - концентрации водородных ионов .

У человека относительное постоянство напряже­ния О 2 и СО 2 артериальной крови сохраняется даже при физической работе, когда потребление О 2 и образование СО 2 возрастает в не­сколько раз. Это возможно потому, что при работе вентиляция легких увеличивается пропорционально интенсивности метаболичес­ких процессов. Избыток СО 2 и недостаток О 2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О 2 и СО 2 в альвеолах и в артериальной крови почти не изменяется.

Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО 2 . При вдыхании газовой смеси, содержащей 5-7% СО 2 , увеличение парциального давления СО 2 в альвеолярном воздухе задерживает выведение СО 2 из венозной крови. Связанное с этим повышение напряжения СО 2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыха­ния, концентрация СО 2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО 2 в альвеолах на 0.2% вы­зывает увеличение вентиляции легких на 100%. Роль СО 2 как глав­ного регулятора дыхания, выявляется и в том, что недостаток со­держания СО 2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному пре­кращению дыхательных движения (апное). Это происходит, напри­мер, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО 2 в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается.

Указанные изменения газового состава внутренней среды орга­низма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствителъные рецепторы , расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы« ) и в сосудистых рефлексогенных зонах перифери­ческие хеморецепторы «) .

Регуляции дыхания Центральными (медуллярными) хеморецепторами

text_fields

text_fields

arrow_upward

Центральными (медуллярными) хеморецепторами, постоянно участву­ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО 2 и кислотно-щелочному состоянию омывающей их межклеточной мозговой жид­кости. Хемочувствительные зоны имеются на переднебоковой поверх­ности продолговатого мозга около выходов подъязычного и блужда­ющего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация кото­рых зависит от напряжения СО 2 в артериальной крови. Спинномоз­говая жидкость отделена от крови гемато-энцефалическим барьером, относительно непроницаемым для ионов Н + и НСО 3 , но свободно пропускающим молекулярный СО 2 . При повышении напряжения СО 2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н + , которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО 2 и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейро­нов дыхательного центра продолговатого мозга. В результате этого, дыхание становится более глубоким и вентиляция легких растет, глав­ным образом, за счет увеличения объема каждого вдоха. Напротив, снижение напряжения СО 2 и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО 2 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания.

Регуляции дыхания Периферическими хеморецепторами

text_fields

text_fields

arrow_upward

Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях:

1) Дуге аорты,

2) Месте деления (бифуркация) общей сонной артерии (каротидный си­ нус),

т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Однако, хеморецепторы представля­ют собой самостоятельные образования, заключенные в особых тель­цах - клубочках или гломусах, которые находятся вне сосуда. Аффе­рентные волокна от хеморецепторов идут: от дуги аорты - в со­ставе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называ­емом нерве Геринга. Первичные афференты синусного и аортально­го нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга.

Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Умень­шение напряжения кислорода в артериальной крови ниже нормаль­ного уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов.

Хеморецепторы каротидного синуса . Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посыла­емых хеморецепторами каротидного тельца. Повышению напряжения СО 2 артериальной крови и соответству­ющему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Особенность роли, которую играют артериаль­ные хеморецепторы в контроле за напряжением углекислоты, состо­ит в том, что они ответственны за начальную, быструю, фазу вен­тиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится на­пряжение СО 2 области хемочувствительных мозговых структур.

Гиперкапническая стимуляция артериальных хеморецепторов, по­добно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО 2 20-30 мм рт.ст и, сле­довательно, имеет место уже в условиях нормального напряжения СО 2 в артериальной крови (около 40 мм рт.ст.).

Взаимодей­ствие гуморальных стимулов дыхания

text_fields

text_fields

arrow_upward

Важным моментом для регуляции дыхания является взаимодей­ствие гуморальных стимулов дыхания. Оно проявляется, например, в том, что на фоне повышенного артериального напряжения СО 2 или увеличенной концентрации водородных ионов вентиляторная ре­акция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение пар­циального давления углекислого газа в альвеолярном воздухе вызы­вают нарастание легочной вентиляции, превышающее арифметичес­кую сумму ответов, которые вызывают эти факторы, действуя по­рознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъ­емом газообмена и требует адекватного ему усиления работы дыха­тельного аппарата.

Установлено, что гипоксемия снижает порог и увеличивает ин­тенсивность вентиляторной реакции на СО 2 . Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО 2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О 2 во вдыхаемом воздухе (например, при дыхании газовы­ми смесями с низким содержанием О 2 , при пониженном атмосфер­ном давлении в барокамере или в горах) возникает гипервентиля­ция, направленная на предупреждение значительного снижения пар­циального давления О 2 в альвеолах и напряжения его в артеальной крови. При этом из-за гипервентиляции наступает снижение пар­циального давления СО 2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО 2 во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О 2 и СО 2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, напряжение О 2 все же снижается, и возникает умеренная гипоксемия.

В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморе­цепторов имеет жизненно важное значение для организма, напри­мер, в условиях дефицита О 2 . При гипоксии из-за снижения окис­лительного метаболизма в мозге чувствительность медуллярных хе­морецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих усло­виях получает интенсивную стимуляцию от артериальных хеморе­цепторов, для которых гипоксемия является адекватным раздражи­телем. Таким образом, артериальные хеморецепторы служат «ава­рийным» механизмом реакции дыхания на изменение газового со­става крови, и, прежде всего, на дефицит кислородного снабжения мозга.

Дыхательный центр не только обеспечивает ритмическое чередование вдоха и выдоха, но и способен изменять глубину и частоту дыхательных движений, приспосабливая тем самым легочную вентиляцию к текущим потребностям организма. Факторы внешней среды, например состав и давление атмосферного воздуха, окружающая температура, и изменения состояния организма, например при мышечной работе, эмоциональном возбуждении и др., влияя на интенсивность обмена веществ, а, следовательно, потребление кислорода и выделение углекислого газа, действуют на функциональное состояние дыхательного центра. В результате меняется объем легочной вентиляции.

Как и все другие процессы автоматической регуляции физиологических функций, регуляция дыхания осуществляется в организме на основе принципа обратной связи. Это значит, что деятельность дыхательного центра, регулирующего снабжение организма кислородом и удаление образующегося в нем углекислого газа, определяется состоянием регулируемого им процесса. Накопление в крови углекислоты, а также недостаток кислорода являются факторами, вызывающими возбуждение дыхательного центра.

Значение газового состава крови в регуляции дыхания было показано Фредериком путем опыта с перекрестным кровообращением. Для этого у двух собак, находившихся под наркозом, перерезали и соединяли перекрестно их сонные артерии и отдельно яремные вены (рисунок 2) После такого соединения этих и зажатия других сосудов шеи голова первой собаки снабжалась кровью не от собственного туловища, а от туловища второй собаки, голова же второй собаки - от туловища первой.

Если у одной из этих собак зажать трахею и таким образом производить удушение организма, то через некоторое время у нее происходит остановка дыхания (апноэ), у второй же собаки возникает резкая одышка (диспноэ). Это объясняется тем, что зажатие трахеи у первой собаки вызывает накопление СО 2 в крови ее туловища (гиперкапния) и уменьшение содержания кислорода (гипоксемия). Кровь из туловища первой собаки поступает в голову второй собаки и стимулирует ее дыхательный центр. В результате возникает усиленное дыхание - гипервентиляция - у второй собаки, что приводит к снижению напряжения СО 2 и повышению напряжения О 2 в крови сосудов туловища второй собаки. Богатая кислородом и бедная углекислым газом кровь из туловища этой собаки поступает в голову первой и вызывает у нее апноэ.

Рисунок 2 - Схема опыта Фредерика с перекрестным кровообращением

Опыт Фредерика показывает, что деятельность дыхательного центра изменяется при изменении напряжения СО 2 и О 2 в крови. Рассмотрим влияние на дыхание каждого из этих газов в отдельности.

Значение напряжения углекислого газа в крови в регуляции дыхания. Повышение напряжения углекислого газа в крови вызывает возбуждение дыхательного центра, приводящее к увеличению вентиляции легких, а понижение напряжения углекислого газа в крови угнетает деятельность дыхательного центра, что приводит к уменьшению вентиляции легких. Роль углекислого газа в регуляции дыхания доказана Холденом в опытах, в которых человек находился в замкнутом пространстве небольшого объема. По мере того как во вдыхаемом воздухе уменьшается содержание кислорода и увеличивается содержание углекислого газа, начинает развиваться диспноэ. Если же поглощать выделяющийся углекислый газ натронной известью, содержание кислорода во вдыхаемом воздухе может снизиться до 12%, причем заметного увеличения легочной вентиляции не наступает. Таким образом, увеличение объема вентиляции легких в этом опыте обусловлено повышением содержания во вдыхаемом воздухе углекислого газа.

Результаты экспериментов дали убедительное доказательство того, что состояние дыхательного центра зависит от содержания углекислого газа в альвеолярном воздухе. Выявлено, что увеличение содержания СО 2 в альвеолах на 0,2% вызывает увеличение вентиляции легких на 100%.

Уменьшение содержания углекислого газа в альвеолярном воздухе (и, следовательно, уменьшение напряжения его в крови) понижает деятельность дыхательного центра. Это происходит, например, в результате искусственной гипервентиляции, т. е. усиленного глубокого и частого дыхания, которое приводит к снижению парциального давления СО 2 в альвеолярном воздухе и напряжения СО 2 в крови. В результате наступает остановка дыхания. Пользуясь таким способом, т. е. производя предварительную гипервентиляцию, можно значительно увеличить время произвольной задержки дыхания. Так поступают ныряльщики, когда им нужно провести под водой 2…3 минуты (обычная длительность произвольной задержки дыхания составляет 40…60 секунд).

На дыхательный центр оказывает влияниеповышение концентрации водородных ионов. Винтерштейн в 1911 г. высказал точку зрения, что возбуждение дыхательного центра вызывает не сама угольная кислота, а, повышение концентрации водородных ионов вследствие увеличения ее содержания в клетках дыхательного центра.

Стимулирующее влияние углекислого газа на дыхательный центр является основанием одного мероприятия, нашедшего применение в клинической практике. При ослаблении функции дыхательного центра и возникающем при этом недостаточном снабжении организма кислородом больного заставляют дышать через маску смесью кислорода с 6% углекислого газа. Такая газовая смесь носит название карбогена.

Значение хеморецепторов продолговатого мозга видно из следующих фактов. При воздействии на эти хеморецепторы углекислого газа или растворов с повышенной концентрацией Н+-ионов наблюдается стимуляция дыхания. Охлаждение одного из хеморецепторных телец продолговатого мозга влечет за собой, согласно опытам Лешке, прекращение дыхательных движений на противоположной стороне тела. Если хеморецепторные тельца разрушены или отравлены новокаином, дыхание прекращается.

Наряду с хеморецепторами продолговатого мозга в регуляции дыхания важная роль принадлежит хеморецепторам, находящимся в каротидном и аортальном тельцах . Это было доказано Геймансом в методически сложных опытах, в которых сосуды двух животных соединялись так, что каротидный синус и каротидное тельце или дуга аорты и аортальное тельце одного животного снабжались кровью другого животного. Оказалось, что увеличение концентрации Н + -ионов в крови и повышение напряжения СО 2 вызывают возбуждение каротидных и аортальных хеморецепторов и рефлекторное усиление дыхательных движений.

Рассмотрим влияние недостатка кислорода на дыхание. Возбуждение инспираторных нейронов дыхательного центра возникает не только при повышении напряжения углекислого газа в крови, но и при понижении напряжения кислорода.

Характер изменения дыхания при избытке углекислоты и понижении напряжения кислорода в крови различен. При небольшом понижении напряжения кислорода в крови наблюдается рефлекторное учащение ритма дыхания, а при незначительном повышении напряжения углекислоты в крови происходит рефлекторное углубление дыхательных движений.

Таким образом, деятельность дыхательного центра регулируется воздействием повышенной концентрации Н+-ионов и увеличенного напряжения СО 2 на хеморецепторы продолговатого мозга и на хеморецепторы каротидного и аортального телец, а также действием на хеморецепторы указанных

Значение механорецепторов в регуляции дыхания. Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц.

Влияние прессорецепторов сосудистых рефлексогенных зон обнаруживается в том, что повышение давления в изолированном каротидном синусе, связанном с организмом только нервными волокнами, приводит к угнетению дыхательных движений. Это происходит и в организме при повышении артериального давления. Наоборот, при понижении артериального давления дыхание учащается и углубляется.

Важное значение в регуляции дыхания имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких . От них в значительной степени зависит глубина вдоха и выдоха. Наличие рефлекторных влияний с легких было описано в 1868 г. Герингом и Брейером и легло в основу представления о рефлекторной саморегуляции дыхания. Она проявляется в том, что при вдохе в рецепторах, находящихся в стенках альвеол, возникают импульсы, рефлекторно тормозящие вдох, и стимулирующих выдох, а при очень резком выдохе, при крайней степени уменьшения объема легких возникают импульсы, поступающие к дыхательному центру и рефлекторно стимулирующие вдох. О наличии такой рефлекторной регуляции свидетельствуют следующие факты:

В легочной ткани в стенках альвеол, т. е. в наиболее растяжимой части легкого, имеются интерорецепторы, представляющие собой воспринимающие раздражения окончания афферентных волокон блуждающего нерва;

- после перерезки блуждающих нервов дыхание становится резко замедленным и глубоким;

При раздувании легкого индифферентным газом, например азотом, при обязательном условии целости блуждающих нервов, мускулатура диафрагмы и межреберий внезапно перестает сокращаться, вдох останавливается, не достигнув обычной глубины; наоборот, при искусственном отсасывании воздуха из легкого наступает сокращение диафрагмы.

На основании всех этих фактов авторы пришли к выводу, что растяжение легочных альвеол во время вдоха вызывает раздражение рецепторов легких, вследствие чего учащаются импульсы, приходящие к дыхательному центру по легочным ветвям блуждающих нервов, а это рефлекторно возбуждает экспираторные нейроны дыхательного центра, и, следовательно, влечет за собой возникновение выдоха. Таким образом, как писали Геринг и Брейер, «каждый вдох, поскольку он растягивает легкие, сам подготовляет свой конец».

Помимо механорецепторов легких , в регуляции дыхания принимают участие механорецепторы межреберных мышц и диафрагмы . Они возбуждаются растяжением при выдохе и рефлекторно стимулируют вдох (С. И. Франштейн).

Соотношения между инспираторными и экспираторными нейронами дыхательного центра. Между инспираторными и экспираторными нейронами существуют сложные реципрокные (сопряженные) соотношения. Это означает, что возбуждение инспираторных нейронов тормозит экспираторные, а возбуждение экспираторных нейронов тормозит инспиряторные. Такие явления частично обусловлены наличием прямых связей, существующих между нейронами дыхательного центра, но в основном они зависят от рефлекторных влияний и от функционирования центра пневмотаксиса.

Взаимодействие между нейронами дыхательного центра в настоящее время представляют следующим образом. Вследствие рефлекторного (через хеморецепторы) действия углекислоты на дыхательный центр возникает возбуждение инспираторных нейронов, которое передается на мотонейроны, иннервирующие дыхательные мышцы, вызывая акт вдоха. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, расположенному в варолиевом мосту, а от него по отросткам его нейронов импульсы приходят к экспираторным нейронам дыхательного центра продолговатого мозга, вызывая возбуждение этих нейронов, прекращение вдоха и стимуляцию выдоха. Кроме того, возбуждение экспираторных нейронов во время вдоха осуществляется и рефлекторно посредством рефлекса Геринга - Брейера. После перерезки блуждающих нервов приток импульсов от механорецепторов легких прекращается и экспираторные нейроны могут возбуждаться лишь посредством импульсов, приходящих из центра пневмотаксиса. Импульсация, возбуждающая центр выдоха, значительно уменьшается и возбуждение его несколько запаздывает. Поэтому после перерезки блуждающих нервов вдох продолжается значительно дольше и сменяется выдохом позднее, чем до перерезки нервов. Дыхание становится редким и глубоким.

Таким образом, жизненно важная функция дыхания, возможная лишь при ритмическом чередовании вдоха и выдоха, регулируется сложным нервным механизмом. При его изучении обращает на себя внимание множественное обеспечение работы этого механизма. Возбуждение центра вдоха возникает как под влиянием увеличения концентрации водородных ионов (повышения напряжения СО 2) в крови, вызывающего возбуждение хеморецепторов продолговатого мозга и хеморецепторов сосудистых рефлексогенных зон, так и в результате влияния пониженного напряжения кислорода на аортальные и каротидные хеморецепторы. Возбуждение центра выдоха обусловлено как рефлекторными импульсами, приходящими к нему по афферентным волокнам блуждающих нервов, так и влиянием центра вдоха, осуществляемым через центр пневмотаксиса.

Возбудимость дыхательного центра изменяется при действии нервных импульсов, поступающих по шейному симпатическому нерву. Раздражение этого нерва повышает возбудимость центра дыхания, что усиливает и учащает дыхание.

Влиянием симпатических нервов на дыхательный центр отчасти объясняются изменения дыхания при эмоциях.


Похожая информация.


Напряжение в артериальной крови О 2 и СО 2 , а также рН, как уже известно, зависит от вентиляции легких.

Но, в свою очередь, они являются факторами, влияющими на интенсивность этой вентиляции, то есть они влияют на деятельность ДЦ.

Опыт Фредерико с перекрестным кровообращением. У двух собак соединяли перекрестно сонные артерии с яремными венами при перевязанных позвоночных артериях. В результате голова первой собаки снабжалась кровью второй собаки, а голова второй собаки - кровью первой. Если у первой собаки пережать трахею (вызвать асфиксию), то у второй собаки наступало гиперпноэ. У первой собаки, несмотря на повышение рСО 2 и понижение рО 2, возникает апноэ.

Причина: в сонную артерию первой собаки поступала кровь второй собаки, у которой в результате гипервентиляции, в крови понижалось рСО 2 . Это влияние осуществляется не непосредственно на его нейроны, а через посредство специальных хеморецепторов, расположенных:

1. В центральных структурах (центральные, медулярные, бульбарные хеморецепторы).

2. На периферии (артериальные хеморецепторы).

От этих рецепторов в дыхательный центр поступает афферентная сигнализация о газовом составе крови.

Роль центральных хеморецепторов . Центральные хеморецепторы располагаются в ПМ. Перфузия участка ПМ в области расположения данных рецепторов раствором с пониженным рН приводит к резкому усилению дыхания, а с повышением рН - к ослаблению дыхания.

В естественных условиях центральные хеморецепторы постоянно стимулируются Н + . Концентрация Н + в ней находится в зависимости от напряжения СО 2 в артериальной крови. Снижение рН на 0,01 вызывает увеличение вентиляции легких на 4 л/мин.

Вместе с тем, центральные хеморецепторы реагируют и на изменения рСО 2 , но в меньшей степени, чем изменения рН. Полагают, что основным химическим фактором, влияющим на центральные хеморецепторы является содержание Н + в межклеточной жидкости ствола мозга, а действие СО 2 связано с образованием этих ионов.

Роль артериальных хеморецепторов. О 2 , СО 2 и Н + могут действовать на структуры НС не только центрально, непосредственно, но и путем возбуждения периферических хеморецепторов.

Наиболее важными из них является:

1. Параганглии, расположенные у места деления общей сонной артерии на внутреннюю и наружную, называемые каротидными тельцами (иннервируются веточками языкоглоточного нерва).

2. Параганглии дуги аорты, так называемые аортальные тельца (иннервируются волокнами п.vagus).



Хеморецепторы указанных зон, возбуждаются при повышении рСО 2 и понижении рО 2 и рН. Влияние О 2 на дыхательный центр опосредовано исключительно периферическими хеморецепторами.

Таким образом, нейроны ДЦ поддерживаются в состоянии активности импульсами, поступающими от центральных (бульбарных) и периферических (артериальных) хеморецепторов, реагирующих на изменение 3-х параметров артериальной крови:

1. Снижение рО 2 (гипоксемию);

2. Повышение рСО 2 (гиперкапнию);

3. Снижению рН (ацидоз).

Главным стимулом дыхания является гиперкапния. Чем выше рСО 2 (а с ним связана и рН), тем выше вентиляция легких.

Влияние СО 2 и ионов Н+ на дыхание опосредованно , главным образом, их действием на особые структуры ствола мозга, обладающие хемочувствительностью (центральные хеморецепторы). Хеморецепторы, реагирующие на изменение газового состава крови, обнаружены в стенках сосудов только в двух областях - в дуге аорты и синокаротидной области (вне сосудов).

Снижение напряжения О 2 в артериальной крови (гипоксемия) ниже 50-60 мм рт.ст. сопровождается увеличением вентиляции легких уже через 3-5 с. В норме такого сильного падения напряжения О 2 не встречается, однако артериальная гипоксия может возникнуть при подъеме на высоту, при сердечно-легочной патологии. Сосудистые хеморецепторы (аортальные и синокаротидные) возбуждаются и при нормальном напряжении газов крови, их активность сильно возрастает при гипоксии и исчезает при дыхании чистым кислородом. Стимуляция дыхания при снижении напряжения О 2 опосредована исключительно периферическими хеморецепторами. Аортальные и каротидные тельца возбуждаются (импульсация от них учащается) при повышении напряжения СО 2 или при уменьшении рН. Однако влияние СО 2 с хеморецепторов выражено меньше, нежели О 2 .

У плода регуляция дыхательных движений осуществляется, в основном, содержанием О 2 в крови. При снижении содержания О 2 в крови плода увеличивается частота и глубина дыхательных движений. Одновременно с этим увеличивается частота сердечных сокращений, повышается кровяное давление и увеличивается скорость кругооборота крови. Однако механизм такой адаптации к гипоксемии у плода иной, чем у взрослых.



Во-первых, реакция у плода имеет не рефлекторное (через хеморецепторы каротидной и аортальной зон, как у взрослого), а центральное происхождение, так как сохраняется после выключения хеморецепторов.

Во-вторых, реакция не сопровождается увеличением кислородной емкости и количества эритроцитов в крови, что имеет место у взрослого человека.

На дыхание плода отрицательно влияет не только снижение, но и повышение содержания О 2 в крови. При повышении содержания О 2 в крови матери (например, при вдыхании чистого О 2) у плода прекращаются дыхательные движения. Одновременно с этим уменьшается частота сердечных сокращений.

У новорожденного регуляция дыхания осуществляется в основном стволовыми нервными центрами.

Начиная с первых дней внеутробной жизни, блуждающие нервы играют большую роль в регуляции дыхания.

У детей первых лет жизни отмечается более высокая устойчивость к кислородному голоданию. Это объясняется:

1) более низкой возбудимостью дыхательного центра;

2) более высоким содержанием О 2 в альвеолярном воздухе, что позволяет поддерживать его нормальное напряжение в крови более длительное время;

3) спецификой окислительно-восстановительных реакций в ранние периоды жизни, которая позволяет длительное время поддерживать обмен веществ на достаточном уровне и в анаэробных условиях.