Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга. Техника микронейрографии сделала возможным утверждать наличие у человека двух таких же типов рецепторов боли (ноцицепторов), как и у других млекопитающих. Анатомически первый тип ноцицепторов представлен свободными нервными окончаниями, разветвлёнными в виде дерева (миелиновые волокна). Они представляют собой быстрые А - дельта волокна, проводящие раздражение со скоростью 6 - 30 мс. Эти волокна возбуждаются высокоинтенсивными механическими (булавочный укол) и, иногда, термическими раздражениями кожи. А - дельта ноцицепторы располагаются, преимущественно, в коже, включая оба конца пищеварительного тракта. Находятся они также и в суставах. Трансмиттер А - дельта волокон остаётся неизвестным.

Другой тип ноцицепторов представлен плотными некапсулированными гломерулярными тельцами (немиелиновые С - волокна, проводящие раздражение со скоростью 0,5 - 2 мс). Эти афферентные волокна у человека и других приматов представлены полимодальными ноцицепторами, поэтому реагируют как на механические,так на температурные и химические раздражения. Они активируются химическими веществами, возникающими при повреждении тканей, являясь одновременно и хеморецепторами, и считаются со своей эволюционной примитивностью оптимальными тканеповреждающими рецепторами. С - волокна распределяются по всем тканям за исключением центральной нервной системы. Однако, они присутствуют в периферических нервах, как nervi nervorum. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера. Такой тип ноцицепторов также содержит calcitonin ген - связанный пептид, а волокна из внутренних органов - вазоактивный интестинальный пептид (Nicholls et al,1992).

Задние рога спинного мозга

Большинство “болевых волокон” достигают спинного мозга через спинномозговые нервы (в случае, если они отходят от шеи, туловища и конечностей) или входят в продолговатый мозг в составе тройничного нерва. Проксимально от спиномозгового ганглия перед вхождением в спинной мозг задний корешок разделяется на медиальную, содержащую толстые миелиновые волокна, и латеральную части, в состав которой входят тонкие миелиновые (А - дельта) и немиелиновые (С) волокна (Sindou, et al.,1975),что предоставляет возможность хирургу с помощью операционного микроскопа, произвести их функциональное разделение. Однако известно, что проксимальные аксоны примерно 30% С - волокон после выхода из спинномозгового ганглия возвращаются обратно к месту совместного хода чувствительных и двигательных корешков (канатик) и входят в спинной мозг через передние корешки (Coggeshall et al,1975). Этот феномен, вероятно, объясняет причину неэффективности попыток дорзальной ризотомии, предпринимаемой для облегчения боли (Blumenkopf,1994). Но, тем не менее, поскольку все С - волокна, размещают свои нейроны в спинномозговом ганглии, цель может быть, достигнута ганглиолизисом (Nash,19986). При вхождении ноцицептивных волокон в спинной мозг, они разделяются на восходящие и нисходящие ветви. Перед своим окончанием в сером веществе задних рогов эти волокна могут направляться к нескольким сегментам спинного мозга. Разветвляясь, они формируют связи с другими многочисленными нервными клетками. Таким образом, термин “заднероговой комплекс” используется для обозначения данной нейроанатомической структуры. Ноцицептивной информацией прямо или косвенно активируются два основных класса релейных заднероговых клеток: “ноцицептивные специфические” нейроны, активируемые только ноцицептивными стимулами и “wide dynamic range” или “конвергентные” нейроны, активируемые также и не ноцицептивными стимулами. На уровне задних рогов спинного мозга большое число первичных афферентных раздражений передаются через интернейроны или ассоциативные нейроны, чьи синапсы облегчают, либо препятствуют передаче импульсов. Периферический и центральный контроль локализуется в желатинозной субстанции, примыкающей к клеточному слою.

Воротный контроль, как внутренний спинальный механизм.

Теория “воротного контроля” - одна из наиболее плодотворных концепций механизмов боли (Melzack,Wall,1965),хотя её анатомические и физиологические основы до сих пор не являются полностью отработанными (Swerdlow,Charlton,1989). Основное положение теории состоит в том, что импульсы, проходящие по тонким (“болевым”) периферическим волокнам открывают “ворота” в нервную систему, чтобы достичь её центральных отделов. Два обстоятельства могут закрыть ворота: импульсы, проходящие по толстым (“тактильным”) волокнам и определённые импульсы, нисходящие из высших отделов нервной системы. Механизм действия толстых периферических волокон, закрывающих ворота, заключается в том, что боль, возникающая в глубоких тканях, таких как мышцы и суставы, уменьшается контрраздражением, - механическим растиранием поверхности кожи или использованием раздражающих мазей (Barr,Kiernan,1988). Эти свойства имеют терапевтическое применение, например использование высокочастотного, низко интенсивного электрического раздражения толстых кожных волокон (Wall,Sweet,1967),известного, как чрезкожная электронейростимуляция (ЧЭНС), или вибрационной стимуляции (Lunderberg,1983). Второй механизм (закрытие ворот изнутри) вступает в действие в случае активации нисходящих тормозных волокон из ствола мозга, либо их прямой стимуляцией, либо гетеросегментарной акупунктурой (низкочастотная высокоинтенсивная периферическая стимуляция). В этом случае нисходящие волокна активируют интернейроны, расположенные в поверхностных слоях задних рогов, постсинаптически ингибирующих желатинозные клетки, предотвращая тем самым передачу информации выше (Swerdlow, Charlton ,1989).

Опиоидные рецепторы и механизмы.

Открытие опиоидных пептидов и опиоидных рецепторов относится к началу 70х годов. В 1973 г. три исследовательские группы (Hughes, Kosterlitz, Yaksh) определили места приложения морфина, а двумя годами позже другие две группы открыли локализацию природных пептидов, имитирующих действие морфина. Клиническое значение имеют три класса опиоидных рецепторов: мюкаппа - и дельта - рецепторы (Kosterlitz,Paterson,1985). Их распределение внутри ЦНС очень вариабильно. Плотное размещение рецепторов обнаружено в задних рогах спинного мозга, в среднем мозге и таламусе. Иммуноцитохимические исследования показали наибольшую концентрацию спинальных опиоидных рецепторов в поверхностных слоях задних рогов спинного мозга. Эндогенные опиоидные пептиды (энкефалин, эндорфин, динорфин) взаимодействуют с опиоидными рецепторами всякий раз, когда в результате преодоления болевого порога возникают болевые раздражения. Факт расположения множества опиоидных рецепторов в поверхностных слоях спинного мозга означает, что опиаты могут легко проникать в него из окружающей спинномозговой жидкости. Экспериментальные наблюдения (Yaksh,Rudy,1976) прямого спинального действия опиатов привели к возможности их терапевтического применения методом интратекального (Wang,1977) и эпидурального (Bromage et al,1980) введения.

Известно, что для подавления гипервозбудимости спинальных нейронов требуются большие дозы морфина. Однако если малые дозы морфина назначать непосредственно перед повреждающей стимуляцией, то триггерная центральная гипервозбудимость никогда не формируется (Woolf,Wall,1986). В настоящее время стало ясно, что предварительное лечение позволяет предупредить сильную послеоперационную боль (Wall,Melzack,1994).

Восходящие пути боли.

Давно известно, что восходящие “болевые пути” находятся в составе переднебоковых канатиков белого вещества спинного мозга и идут контрлатерально стороне вхождения болевых стимулов (Spiller,1905). Так же хорошо известно, что часть волокон спиноталамического и спиноретикулярного трактов, проводящих болевое раздражение, присутствует в заднебоковом канатике (Barr,Kiernan,1988).Трактотомия или хирургическое пересечение переднебоковой области спинного мозга, включающей спиноталамические и спиноретикулярные пути, приводит к почти полной потере способности ощущать боль на противоположной стороне тела ниже уровня повреждения (Kaye,1991). Однако обычно, чувствительность в течение нескольких недель постепенно восстанавливается, что объясняется синаптической реорганизацией и вовлечением неповреждённых альтернативных путей. Комиссуральная миелотомия вызывает пролонгированную анальгезию в поражённых сегментах.

Спиноталамический тракт может быть, разделён на две части:

  • 1. Неоспиноталамический тракт (быстрое проведение, моносинаптическая передача, хорошо локализованная (эпикритическая) боль, А - волокна). Этот тракт направляется к специфическим латеральным ядрам таламуса (вентрозаднелатеральное и вентрозаднемедиальное ядра).
  • 2. Палеоспиноталамическая система (полисинаптическая передача, медленное проведение, плохо локализованная (протопатическая) боль, С - волокна). Данные пути восходят к неспецифическим медиальным таламическим ядрам (медиальное ядро, интраламинарное ядро, срединный центр). На своём пути к медиальным ядрам таламуса тракт направляет часть волокон к ретикулярной формации.

Стереотаксические электроды, расположенные в таламусе, позволяют распознать специфическую патофизиологию этих структур и развить концепцию, основанную на наличии баланса между медиальным (в основном nucl.centralis lateralis) и латеральным (nucl. ventroposterior) ядрами таламуса, нарушение которого ведёт к сверхторможению их обоих ретикулярным таламическим ядром, а затем к парадоксальной активации корковых полей, связанных с болевым ощущением. Возобновление с учётом новых технических, анатомических и физиологических данных медиальной стереотаксической таламотомии приносит облегчение двум третям больных с хронической и терапевтически резистентной периферической и центральной нейрогенной болью на 50 - 100% (Jeanmonod et al.,1994).

Импульсы входящие через неоспиноталамическую систему переключаются на волокна, передающие сигналы через заднее бедро внутренней капсулы к первой соматосенсорной зоне коры, постцентральной извилине и второй соматосенсорной зоне (operculum parietal). Высокая степень топической организации внутри латерального ядра таламуса делает возможным пространственную локализацию боли. Изучения тысяч корковых поражений в обеих мировых войнах демонстрируют, что повреждения постцентральной извилины никогда не вызывает потери болевой чувствительности, хотя ведут к потере соматотопически организованной низкопороговой механорецептивной чувствительности, также как и ощущения укола иглой (Bowsher,1987).

Импульсы, входящие через палеоспиноталамический тракт, переключаются на медиальное ядро таламуса и проецируются на неокортекс диффузным способом. Проекция в лобной области отражает аффективные компоненты боли. Позитронно-эмиссионная томография показывает, что повреждающие стимулы активируют нейроны цингулярной извилины и орбитальной фронтальной коры (Jones et al,1991). Цингулотомия или префронтальная лоботомия показывают отличный эффект в лечении боли у онкологических больных (Freeman,Watts,1946). Таким образом, в головном мозге нет “болевого центра”, а восприятие и реакция на боль являются функцией ЦНС в целом (Diamond,Coniam,1991, Talbot et al,1991).

Нисходящая модуляция боли.

Известно, что микроинъекции морфина в периакведуктальное серое вещество (PAG)среднего мозга (Tsou,Jang,1964) (центральное серое вещество _ ЦСВ), также как и его электрическая стимуляция (Reynolds,1969) вызывает настолько глубокую анальгезию, что у крыс даже хирургические вмешательства не вызывают каких - либо заметных реакций. Когда были открыты области сосредоточения опиоидных рецепторов и естественных опиатов, стало понятно, что эти отделы ствола мозга являются релейной станцией супраспинальных нисходящих модуляторных контрольных систем. Вся система, как стало сейчас понятно, представляется следующим образом.

Аксоны группы клеток, использующих В - эндорфин в качестве трансмиттера, расположенные в области nucl.arcuatus гипоталамуса (который сам находится под контролем префронтальной и островковой зон коры головного мозга) пересекают перивентрикулярное серое вещество в стенке третьего желудочка, оканчиваясь в периакведуктальном сером веществе (PAG). Здесь они ингибируют местные интернейроны, освобождая, таким образом, от их тормозного влияния клетки, чьи аксоны проходят вниз к области nucleus raphe magnum в середине ретикулярной формации продолговатого мозга. Аксоны нейронов этого ядра, преимущественно серотонинергических (трансмиттер - 5 - гидрокситриптамин), направляются вниз по дорсолатеральному канатику спинного мозга, заканчиваясь в поверхностных слоях заднего рога. Некоторая часть raphe - спинальных аксонов и значительное число аксонов из ретикулярной формации являются норадренергическими. Таким образом, как серотонинергические, так и норадренергические нейроны ствола мозга выступают как структуры, блокирующие ноцицептивную информацию в спинном мозге (Field,1987). Присутствие соединений биогенных аминов в контролирующих боль системах объясняет причину анальгезии, вызываемой трициклическими антидепрессантами. Эти препараты подавляют повторное поглощение серотонина и норадреналина синапсом и, таким образом, усиливают тормозное действие трансмиттеров на нейроны спинного мозга. Наиболее мощное торможение болевой чувствительности у животных вызывается прямой стимуляцией nucl.raphe magnus (ядра шва). У человека перивентрикулярное и периакведуктальное серое вещество представляют собой места, наиболее часто используемые для стимуляции через имплантируемые электроды для устранения боли (Richardson,1982). Упоминаемые выше коллатерали от спиноталамических аксонов к ретикулярной формации могут объяснить эффект гетеросегментарной акупунктуры, поскольку спинальные неспецифические нейроны могут быть активированы таким стимулом, как укол иглы (Bowsher,1987).

  • Вопрос 42. Дофамин-, серотонин-, гистамин-, пурин-, ГАМКергические нейроны нервной системы. Пресинаптические рецепторы.
  • Выраженные болевые синдромы в области позвоночника сначала рассматривали как четыре самостоятельных заболевания.
  • Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон (Дж.Эрлангер , Г.С.Гассер , 1924). Наиболее толстые, миелинизированные Аb-волокна обладают тактильной чувствительностью. Они возбуждаются при неболезненных прикосновениях и при перемещении. Эти окончания могут служить как полимодальные неспецифические болевые рецепторы только при патологических условиях, например, вследствие возрастания их чувствительности (сенсибилизации) медиаторами воспаления. Слабое раздражение полимодальных неспецифических тактильных рецепторов приводит к чувству зуда . Порог их возбудимости понижают гистамин и серотонин (Г.Штюттген , 1981).

    Специфическими первичными болевыми рецепторами (ноцирецепторами) служат два других типа нервных окончаний - тонкие миелинизированные Аd-терминали и тонкие немиелинизированные С-волокна, филогенетически более примитивные. Оба эти типа терминалей представлены и в поверхностных тканях, и во внутренних органах. Некоторые участки тела, например, роговица, иннервируются только Аd и С-афферентами. Ноцирецепторы дают чувство боли в ответ на самые разные интенсивные стимулы - механическое воздействие, термический сигнал (обычно, с температурой более 45-47 0 С), раздражающие химикаты, например, кислоты. Ишемия всегда вызывает боль, поскольку провоцирует ацидоз. Мышечный спазм может вызывать раздражение болевых окончаний из-за относительной гипоксии и ишемии, которые он вызывает, а также вследствие прямого механического смещения ноцирецепторов.

    По С-волокнам проводится со скоростью 0,5-2 м/сек медленная, протопатическая, а по миелинизированным, быстропроводящим Аd-волокнам, обеспечивающим скорость проведения от 6 до 30 м/сек, - эпикритическая боль. Кроме кожи, где, по данным А.Г.Бухтиярова (1966), насчитывается не менее 100-200 болевых рецепторов на 1 см 2 , слизистых и роговицы, болевыми рецепторами обоих типов обильно снабжены надкостница (в чём убеждается каждый футболист, получающий при подкате удар по передне-внутренней поверхности голени), а также сосудистые стенки, суставы, мозговые синусы и париетальные листки серозных оболочек.

    В висцеральных листках этих оболочек и внутренних органах болевых рецепторов гораздо меньше. К тому же, в паренхиме внутренних органов имеются, исключительно, С-волокна протопатической чувствительности, достигающие спинного мозга в составе вегетативных нервов. Поэтому висцеральную боль труднее локализовать, чем поверхностную. Кроме того, локализация висцеральной боли зависит от феномена “отраженных болей”, механизмы которого рассматриваются ниже. Париетальные брюшина, плевра, перикард, капсулы ретроперитонеальных органов и часть брыжейки имеют не только медленные протопатические С-волокна, но и быстрые эпикритические Аd, связанные со спинным мозгом спинальными нервами. Поэтому боль от их раздражения и повреждения намного острее и чётче локализована. Хирурги еще в доанестезиологическую эпоху заметили, что разрезы кишки менее болезненны, чем рассечение пристеночного листка брюшины. Боли при нейрохирургических операциях максимальны в момент рассечения мозговых оболочек, в то же время кора больших полушарий обладает очень незначительной и строго локальной болевой чувствительностью. Вообще, такой распространённый симптом, как головная боль , практически всегда связан с раздражением болевых рецепторов вне самой ткани мозга. Экстракраниальной причиной головной боли могут быть процессы, локализованные в синусах костей головы, спазм цилиарной и других глазных мышц, тоническое напряжение мышц шеи и скальпа. Интракраниальные причины головной боли - это, в первую очередь, раздражение ноцирецепторов мозговых оболочек. При менингите сильнейшие головные боли охватывают всю голову. Весьма серьёзную головную боль вызывает раздражение ноцирецепторов в мозговых синусах и артериях, особенно в бассейне средне-мозговой артерии. Даже незначительные потери цереброспинальной жидкости (около 20 мл) могут спровоцировать головную боль, особенно, в вертикальном положении тела, поскольку плавчесть мозга меняется, и при уменьшении гидравлической подушки раздражаются болевые рецепторы его оболочек. С другой стороны, избыток цереброспинальной жидкости и нарушение ее оттока при гидроцефалии, отек головного мозга, его набухание при внутриклеточной гипергидратации, полнокровие сосудов мозговых оболочек, вызванное цитокинами при инфекциях, локальные объемные процессы - также провоцируют “самую частую жалобу” - головную боль, так как при этом увеличивается механическое воздействие на болевые рецепторы окружающих собственно мозг структур. Обший принцип локализации головных болей таков, что затылочные боли часто отражают раздражение ноцирецепторов сосудов и мозговых оболочек под tentorium, а надпалаточные раздражители и стимуляция верхней поверхности самой палатки проявляются лобно-теменными болями. Знакомая очень значительной части человечества “головная боль с похмелья” имеет комплексный патогенез, включая индуцированное алкоголем полнокровие мозговых оболочек и внутриклеточную гипергидратацию. Патофизиология некоторых форм головной боли, тесно связанных с гуморальными медиаторами болевой и антиболевой систем и с проводниковыми механизмами этих систем, в частности, мигрени, отдельно рассматривается ниже.

    Паренхима селезёнки, почки, печени и легкого совершенно лишена ноцирецепторов. Зато ими богато снабжены бронхи, желчевыводящие пути, капсулы и сосуды этих органов. Даже значительные по размеру абсцессы печени или лёгкого могут быть почти безболезненными. Однако, плеврит или холангит порой дают серьёзный болевой синдром, сами по себе не будучи тяжёлыми. Висцеральные болевые рецепторы отличаются ещё и тем, что развивают сравнительно слабый ответ на строго локальное повреждение органа, например, хирургический разрез. Однако, при диффузном вовлечении ткани в альтерацию (на фоне ишемии, при действии литических ферментов и раздражающих химикатов, при спазмах и перерастяжении полых органов), их чувствительность под воздействием медиаторов воспаления стремительно растёт, и от них исходит сильная импульсация.

    Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных рецепторов, который не подлежит какой бы то ни было адаптации или десенсибилизации под воздействием длящегося или повторяющегося сигнала. Ноцирецепторы не повышают при этом порог своей возбудимости, как это делают другие, например, холодовые сенсоры. Следовательно, рецептор не “привыкает” к боли. Более того, в ноцирецептивных нервных окончаниях имеет место прямо противоположное явление - сенсибилизация болевых рецепторов сигналом. При воспалении, повреждениях тканей (особенно, внутренних органов) и при повторных и длительных болевых раздражителях порог возбудимости ноцирецепторов снижается. Даже легчайшие прикосновения к ожоговой поверхности крайне болезненны. Это явление называется первичной гиперальгезией . Пальпация внутренних органов, даже если она интенсивна, не причиняет боли, если нет их воспаления. Однако при воспалении чувствительность молчащих внутренних ноцирецепторов настолько увеличивается, что врач регистрирует болевые симптомы. Поколачивание по области почек, безболезненное в отсутствие их повреждений, ведет к болевому ощущению в случае, если почечные ноцирецепторы сенсибилизированы медиаторами воспаления (положительный симптом Пастернацкого). Легко отметить, что если бы происходила адаптация болевых рецепторов, все хронические деструктивные процессы были бы безболезненны и боль утратила бы свою функцию сигнала, который, по выражению И.П.Павлова , “побуждает отбросить то, что угрожает жизненному процессу”.

    Называя болевые сенсоры рецепторами, мы должны подчеркнуть, что применение к ним этого термина носит условный характер - ведь это свободные нервные окончания, лишённые каких бы то ни было специальных рецепторных приспособлений.

    Нейрохимические механизмы раздражения ноцирецепторов хорошо изучены. Их основным стимулятором является брадикинин. В ответ на повреждение клеток близ ноцирецептора освобождаются этот медиатор, а также простагландины, лейкотриены и ионы калия и водорода. Простагландины и лейкотриены сенсибилизируют ноцирецепторы к кининам, а калий и водород облегчают их деполяризацию и возникновение в них электрического афферентного болевого сигнала. Возбуждение распространяется не только афферентно, но и антидромно, в соседние ветви терминали. Там оно приводит к секреции вещества Р. Этот нейропептид, о котором уже упоминалось, вызывает вокруг терминали паракринным путём гиперемию, отек, дегрануляцию тучных клеток и тромбоцитов. Освобождаемые при этом гистамин, серотонин, простагландины сенсибилизируют ноцирецепторы, а химаза и триптаза мастоцитов усиливают продукцию их прямого агониста - брадикинина. Следовательно, при повреждении ноцирецепторы действуют и как сенсоры, и как паракринные провокаторы воспаления. Вблизи ноцирецепторов, как правило, располагаются симпатические норадренергические постганглионарные нервные окончания, которые способны модулировать чувствительность ноцирецепторов. При травмах периферических нервов нередко развивается так называемая каузалгия - патологически повышенная чувствительность ноцирецепторов в области, иннервируемой повреждённым нервом, сопровождаемая жгучими болями и даже признаками воспаления без видимых местных повреждений. Механизм каузалгии связан с гипералгизующим действием симпатических нервов, в частности, выделяемого ими норадреналина, на состояние болевых рецепторов. Возможно, при этом происходит секреция вещества Р и других нейропептидов симпатическими нервами, что и обусловливает воспалительные симптомы. Явление каузалгии представляет собой, в полном смысле, нейрогенное воспаление, хотя оно вызывается не нервным, а паракринным способом (см. также выше, о роли нервной регуляции в воспалении).

    Как впервые предположили У.Кэннон и А.Розенблют (1951) паракринная безымпульсная нейропептидэргическая деятельность нервных окончаний в тканях и составляет реальную основу явления, которое в течение более чем 100 лет, от Ф. Мажанди (1824) до Л.А. Орбели (1935) и А.Д. Сперанского , (1937), именовали нервной трофикой .

    Дата добавления: 2015-05-19 | Просмотры: 985 | Нарушение авторских прав


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

    Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон. Наиболее толстые, миелинизированные Аβ-волокна обладают тактильной чувствительностью. Они возбуждаются при неболезненных прикосновениях и при перемещении. Эти окончания могут служить как полимодальные неспецифические болевые рецепторы только при патологических условиях, например, вследствие возрастания их чувствительности (сенсибилизации) медиаторами воспаления. Слабое раздражение полимодальных неспецифических тактильных рецепторов приводит к чувству зуда. Порог их возбудимости понижают гистамин и серотонин .

    Специфическими первичными болевыми рецепторами (нонирецепторами) служат два других типа нервных окончаний – тонкие миелинизированные Аδ-терминали и тонкие немиелинизированные С-волокна , филогенетически более примитивны. Оба эти типа терминалей представлены и в поверхностных тканях, и во внутренних органах. Ноцирецепторы дают чувство боли в ответ на самые разные интенсивные стимулы – механическое воздействие, термический сигнал и т.д. Ишемия всегда вызывает боль поскольку провоцирует ацидоз. Мышечный спазм может вызвать раздражение болевых окончаний из-за относительной гипоксии и ишемии, которые он вызывает, а также вследствие прямого механического смещения ноцирецепторов. По С-волокнам проводится со скоростью 0,5-2 м/с медленная, протопатическая боль , а по миелинизированным, быстропроводящим Аδ-волокнам, обеспечивающим скорость проведения от 6 до 30 м/с, - эпикритическая боль . Кроме кожи, где, по данным А.Г.Бухтиярова, насчитывается не менее 100-200 болевых рецепторов на 1 см, слизистых и роговицы, болевыми рецепторами обоих типов обильно снабжены надкостница, а так же сосудистые стенки, суставы, мозговые синусы и париетальные листки серозных оболочек. В висцеральных листках этих оболочек и внутренних органов болевых рецепторов гораздо меньше.

    Боли при нейрохирургических операциях максимальны в момент рассечения мозговых оболочек, в то же время кора больших полушарий обладает очень незначительной и строго локальной болевой чувствительностью. Вообще такой распространенный симптом как головная боль, практически всегда связан с раздражением болевых рецепторов вне самой ткани мозга. Экстракраниальной причиной головной боли могут быть процессы локализованные в синусах костей головы, спазм цилиарной и других глазных мышц, тоническое напряжение мышц шеи и скальпа. Интракраниальные причины головной боли – это в первую очередь раздражение ноцирецепторов мозговых оболочек. При менингите сильнейшие головные боли охватывают всю голову. Весьма серьезную головную боль вызывает раздражение ноцирецепторов в мозговых синусах и артериях, особенно в бассейне средней мозговой артерии. Даже незначительные потери цереброспинальной жидкости могут спровоцировать головную боль, особенно, в вертикальном положении тела, поскольку плавучесть мозга меняется, и при уменьшении гидравлической подушки раздражаются болевые рецепторы его оболочек. С другой стороны, избыток цереброспинальной жидкости и нарушение ее оттока при гидроцефалии, отек головного мозга, его набухание при внутриклеточной гипергидратации, полнокровие сосудов мозговых оболочек, вызванное цитокинами при инфекциях, локальные объемные процессы – также провоцируют головную боль, т.к. при этом увеличивается механическое воздействие на болевые рецепторы окружающих собственно мозг структур.

    Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных рецепторов, которые не подлежат какой бы то ни было адаптации или десенсибилизации под воздействием длящегося или повторяющегося сигнала. Ноцирецепторы при этом не превышают порог своей возбудимости, подобно, например, холодовым сенсорам. Следовательно, рецептор не «привыкает» к боли. Более того, в ноцирецептивных нервных окончаниях имеет место прямо противоположное явление – сенсибилизация болевых рецепторов сигналом . При воспалении, повреждениях ткани и при повторных и длительных болевых раздражителях порог болевой возбудимости ноцирецепторов снижается. Называя болевые сенсоры рецепторами необходимо подчеркнуть, что применение к ним этого термина носит условный характер – ведь это свободные нервные окончания, лишенные каких бы то ни было специальных рецепторных приспособлений.

    Нейрохимические механизмы раздражения ноцирецепторов хорошо изучены. Их основным стимулятором является брадикинин . В ответ на повреждение клеток близ ноцирецептора освобождаются этот медиатор, а так же простагландины, лейкотриены, иона калия и водорода . Простагландины и лейкотриены сенсибилизируют ноцирецепторы к кининам, а калий и водород облегчает их деполяризацию и возникновения в них электрического афферентного болевого сигнала. Возбуждение распространяется не только афферентно, но и антидромно, в соседние ветви терминали. Там оно приводит к секреции вещества Р . Этот нейропептид вызывает вокруг терминали паракринным путем гиперемию, отек, дегрануляцию тучных клеток и тромбоцитов. Освобождаемые при этом гистамин , серотонин, простагландины сенсибилизируют ноцирецепторы, а химаза и триптаза мастоцитов усиливают продукцию их прямого агониста – брадикинина. Следовательно, при повреждении ноцирецепторы действуют как сенсоры, и как паракринные провокаторы воспаления. Вблизи ноцирецепторов, как правило, располагаются симпатические норадренергические постганглионарные нервные окончания, которые способны модулировать чувствительность ноцирецепторов .

    При травмах периферических нервов нередко развивается так называемая каузалгия – патологически повышенная чувствительность ноцирецепторов в области, иннервируемой поврежденным нервом , сопровождаемая жгучими болямии доже признаками воспаления без видимых местных повреждений. Механизм каузалгии связан с гипералгизирующим действием симпатических нервов, в частности, выделяемого ими норадненалина, на состояние болевых рецепторов. Возможно, при этом происходит секреция вещества Р и других нейропептидов симпатическими нервами, что и обуславливает воспалительные симптомы .

    5.2. Система эндогенной модуляции боли.

    В контроле возбудимости нейронов, передающих в ЦНС болевые импульсы, принимают участие в основном опиатэргические, серотонинэргические и норадренэргические воздействия. Анатомически, структурами, где сосредоточены элементы модулирующей систеиы являются таламус, серое вещество в окружности сильвиева водопровода, ядра шва, гелеподобное вещество спинного мозга и nucleus traсtus solitarii .

    Входные сигналы от лобной коры и гипоталамуса могут активировать энкефалинэргические нейроны вокруг водопровода Сильвия, в среднем мозге и мосте. От них возбуждение нисходит на большое ядро шва, пронизывающее нижнюю часть моста и верхнюю – продолговатого мозга. Нейротрансмиттером в нейронах этого ядра является серотонин . Антиболевой центральный эффект серотонина связан с его антидепрессивным и противотревожным действием .

    Ядро шва и близкие к нему роствентрикулярные нейроны продолговатого мозга проводят антиноцирецептивные сигналы в задние рога спинного мозга, где их воспринимают энкефалинэргические нейроны substantia grisea. Энкефалин, вырабатываемый этими тормозными нейронами, осуществляет пресинаптическое ингибирование на болевых афферентных волокнах. Т.о., энкефалин и серотонин передают друг другу эстафетную палочку противоболевой сигнализации . Именно поэтому, морфин и его аналоги, а также агонисты и блокаторы захвата серотонина заняли важное место в анестезиологии. Блокируются не только оба типа болевой чувствительности. Торможение распространяется на защитные болевые спинальные рефлексы, осуществляется оно и на супраспинальном уровне. Опиатэргические системы тормозят стрессорную активности в гипоталамусе (здесь наиболее важен β-эндорфин), ингибируют активность центров гнева, активируют центр наград, вызывают через лимбическую систему изменение эмоционального фона, подавляя отрицательные болевые эмоциональные корреляты и понижают активирующее действие боли на все отделы ЦНС .

    Эндогенные опиоиды через спинномозговую жидкость могут попасть в системный кровоток для осуществления эндокринной регуляции, подавляющей системные реакции на боль.

    Все способы распространения нейропептидов составляют так называемый трансвентрикулярный путь гипоталамической регуляции.

    Депрессии, сопровождаемые уменьшение продукции опиатов и серотонина, часто характеризуются обострением болевой чувствительности . Энкефалины и холецистокинин являются пептидными ко-трансмиттерами в дофаминэргических нейронах. Хорошо известно, что дофаминэргинческая гиперактивность в лимбической системе является одной из патогенетических особенностей шизофрении .

    Соматическаяивисцеральнаячувствительность

    Сенсорные ощущения подразделяются на 3 физиологических класса: механорецептивные , температурные и болевые . Механорецептивные ощущения включают тактильные (прикосновение, давление, вибрация) и проприоцептивные (постуральные) - ощущение позы, статического положения и положения при движении.
    По месту возникновения ощущений чувствительность классифицируется, как экстероцептивная (ощущения, возникающие с поверхности тела), висцеральная (ощущения, возникающие во внутренних органах) и глубокая (ощущения поступают от глубоколежащих тканей - фасций, мышц, костей).
    · Соматические сенсорные сигналы передаются с большой скоростью, высокой точностью локализации и определения минимальных градаций интенсивности или изменений силы сенсорного сигнала.
    · Висцеральные сигналы характеризуются более низкой скоростью проведения, менее развитой системой пространственной локализации восприятия сигнала, менее развитой системой градации силы раздражения и меньшей способностью передавать быстрые изменения сигнала.

    Соматосенсорные сигналы

    Тактильная чувствительность

    Тактильные ощущения прикосновения, давления и вибрации относятся к раздельным видам ощущений, но воспринимаются одними и теми же рецепторами.
    · Ощущение прикосновения - результат стимуляции чувствительных нервных окончаний кожи и подлежащих тканей.
    · Ощущение давления возникает в результате деформации глубоких тканей.
    · Вибрационное ощущение возникает в результате быстрых повторных сенсорных стимулов, наносимых на те же рецепторы, что и рецепторы, воспринимающие прикосновение и давление.

    Тактильные рецепторы

    Проприоцептивное чувство

    Материал этого раздела см. в книге.

    Пути передачи соматосенсорных сигналов

    Практически вся сенсорная информация от сегментов тела (см. рис. 9–8) поступает в спинной мозг через проходящие в составе задних корешков центральные отростки чувствительных нейронов спинномозговых узлов (рис. 9–2, 9–3). Войдя в спинной мозг, центральные отростки чувствительных нейронов либо прямо направляются к продолговатому мозгу (лемнисковая система: тонкий, или нежный пучок Голля и клиновидный пучок Бурдаха), либо заканчиваются на вставочных нейронах, аксоны которых идут к таламусу в составе вентрального, или переднего и латерального, или бокового спиноталамических восходящих путей.

    Рис . 9 – 2 . Спинной мозг . Вид со спинной стороны. Пояснения в тексте. Карты ядер, пластинок и путей спинного мозга см. в разделе «Ядра и проводящие пути спинного мозга» главы 13.

    · Тонкий и клиновидный пучки - проводящие пути проприоцептивной и тактильной чувствительности - проходят в составе заднего канатика той же стороны спинного мозга и заканчиваются в тонком и клиновидном ядрах продолговатого мозга. Аксоны нейронов этих ядер по медиальной петле (отсюда и название - лемнисковая система) переходят на противоположную сторону и направляются к таламусу.

    · Спиноталамический путь вентральный - проекционный афферентный путь, проходящий в переднем канатике противоположной стороны. Периферические отростки первых нейронов, расположенных в спинномозговых узлах, проводят тактильные и прессорные ощущения от механорецепторов кожи . Центральные отростки этих нейронов вступают через задние корешки в задние канатики, где поднимаются на 2–15 сегментов и образуют синапсы с вставочными нейронами задних рогов. Аксоны этих нейронов переходят на противоположную сторону и проходят далее в передней периферической зоне переднебоковых канатиков. Отсюда волокна пути восходят к заднелатеральному вентральному ядру таламуса вместе с латеральным спиноталамическим путём.

    · Спиноталамический путь латеральный - проекционный афферентный путь, проходящий в боковом канатике. Периферическими рецепторами являются свободные нервные окончания кожи. Центральные отростки псевдоуниполярных нейронов спинномозговых узлов входят в противоположную часть спинного мозга через латеральные отделы задних корешков и, поднявшись в спинном мозге на 1–2 сегмента, образуют синапсы с нейронами роландова студенистого вещества. Аксоны этих нейронов фактически образуют латеральный спиноталамический путь. Они идут на противоположную сторону и поднимаются в латеральных отделах боковых канатиков. Спиноталамические пути проходят через ствол мозга и заканчиваются в вентро-латеральных ядрах таламуса. Это главный путь проведения болевой и температурной чувствительности .

    Рис . 9 – 3 . Восходящие пути чувствительности . А . Путь от чувствительных нейронов спинномозговых узлов (первый, или первичный чувствительный нейрон) через вторые нейроны (вставочные нейроны спинного мозга или нервные клетки клиновидного и тонкого ядра продолговатого мозга) к третьим нейронам пути - таламическим. Аксоны этих нейронов направляются к коре головного мозга. Б . Расположение нейронов, передающих разные модальности, в пластинах (римские цифры) спинного мозга.

    Задний канатик состоит из толстых миелиновых нервных волокон, проводящих сигналы со скоростью от 30 до 110 м/с; спиноталамические пути состоят из тонких миелиновых волокон, проводящих ПД со скоростью от нескольких метров до 40 м/с.

    Соматосенсорная кора

    Материал этого раздела см. в книге.

    Обработка сигналов в восходяЩих проекционных путях

    Материал этого раздела см. в книге.

    Болевая чувствительность

    Боль - неприятное сенсорное и эмоциональное ощущение, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения. Боль для организма является защитным сигнальным механизмом и может возникнуть в любой ткани, где появились признаки повреждения. Боль подразделяют на быструю и медленную, острую и хроническую.

    · Быстрая боль ощущается через 0,1 сек после нанесения болевого стимула. Быструю боль описывают под многими наименованиями: режущая, колющая, острая, электрическая и др. От болевых рецепторов в спинной мозг болевые сигналы передаются по волокнам небольшого диаметра A d со скоростью от 6 до 30 м/с.
    · Медленная боль возникает в течение 1 сек и более, а затем медленно нарастает в течение многих секунд или минут (например, медленная жгучая, тупая, пульсирующая, распирающая, хроническая боль). Боль медленного хронического типа передаётся по С‑волокнам со скоростью от 0,5 до 2 м/с.
    Существование двойной системы передачи болевых сигналов приводит к тому, что сильное резкое раздражение часто вызывает двойное болевое ощущение. Быстрая боль передаётся немедленно, а через секунду или чуть позже передаётся медленная боль.

    Рецепция боли

    Боль вызывают многие факторы: механические, температурные и химические болевые стимулы. Быструю боль порождают преимущественно механические и температурные стимулы, медленную - все виды стимулов. Некоторые вещества известны как химические стимуляторы боли: , ионы калия, молочная кислота, протеолитические ферменты. Простагландины повышают чувствительность болевых окончаний, но сами непосредственно не возбуждают их. Болевыми рецепторами (ноцицепторы ) являются свободные нервные окончания (см. рис. 8–1А). Они широко распространены в поверхностных слоях кожи, надкостнице, суставах, стенке артерий. В других глубоких тканях свободных нервных окончаний меньше, но обширные тканевые повреждения могут вызвать боль практически во всех областях организма. Болевые рецепторы практически не адаптируются.

    · Действие химических стимулов , вызывающих боль, проявляется при инъекции экстракта из повреждённой ткани в нормальный участок кожи. В экстракте обнаруживаются все описанные выше химические факторы, вызывающие боль. Наиболее сильную боль вызывает , что позволило считать его основной причиной появления боли при повреждении ткани. Кроме того, интенсивность болевых ощущений коррелирует с локальным увеличением ионов калия и повышением активности протеолитических ферментов. Появление боли в этом случае объясняется прямым влиянием протеолитических ферментов на нервные окончания и повышением мембранной проницаемости для K + , что и является непосредственной причиной появления боли.

    · Тканевая ишемия , возникающая при прекращении кровообращения в ткани, через несколько минут вызывает сильные болезненные ощущения. Замечено, что чем выше обмен в ткани, тем быстрее появляется боль при нарушении кровотока. Например, наложение манжетки на верхнюю конечность и накачивание воздуха до полного прекращения кровотока вызывает в работающей мышце появление боли через 15–20 сек. В этих же условиях в неработающей мышце боль возникает несколько минут спустя.

    · Молочная кислота . Возможной причиной возникновения боли во время ишемии является накопление больших количеств молочной кислоты, но не менее вероятно, что в ткани образуются другие химические факторы (например, и протеолитические ферменты) и именно последние стимулируют болевые нервные окончания.

    · Мышечный спазм приводит к появлению боли, лежащей в основе многих клинических болевых синдромов. Причиной возникновения боли может быть непосредственное воздействие спазма на механочувствительные болевые рецепторы мышц. Вероятнее, что причиной возникновения боли является непрямой эффект спазма мышц, сдавливающего кровеносные сосуды и вызывающего ишемию. Наконец, спазм увеличивает скорость обменных процессов в мышечной ткани, создавая условия для увеличения эффекта действия ишемии и выделения веществ, индуцирующих боль.

    · Болевые рецепторы практически не адаптируются . В ряде случаев возбуждение болевых рецепторов не только не уменьшается, но и продолжает прогрессивно нарастать (например, в виде тупой распирающей боли). Повышение чувствительности болевых рецепторов называется гипералгезией . Понижение порога болевой чувствительности обнаруживается при длительной температурной стимуляции. Отсутствие адаптационной способности у ноцицепторов не позволяет субъекту забывать о вредоносном воздействии болевых стимулов на ткани его тела.

    Передача болевых сигналов

    Быстрой и медленной боли соответствуют собственные нервные пути проведения: путь проведения быстрой боли и путь проведения медленной хронической боли .

    Проведение быстрой боли

    Проведение быстрой боли (рис. 9–7А) от рецепторов осуществляют волокна типа Ad , вступающие в спинной мозг по задним корешкам и синаптически контактирующими с нейронами заднего рога этой же стороны. После образования синапсов с нейронами второго порядка на этой же стороне нервные волокна переходят на противоположную сторону и поднимаются вверх к мозговому стволу в составе спиноталамического тракта в переднебоковых канатиках. В стволе мозга часть волокон синаптически контактирует с нейронами ретикулярной формации, основная же масса волокон проходит к таламусу, оканчиваясь в вентро-базальном комплексе вместе с волокнами лемнисковой системы, несущими тактильную чувствительность. Небольшая часть волокон оканчивается в задних ядрах таламуса. Из этих таламических областей сигналы передаются в другие базальные структуры мозга и в соматосенсорную кору (рис. 9–7А).

    Рис . 9 – 7 . Пути передачи болевой чувствительности (А ) и антиноцицептивная система (Б ).

    · Локализация быстрой боли в различных частях тела более чёткая, чем медленной хронической боли.

    · Передача болевых импульсов (рис. 9–7Б, 9–8). Глутамат и участвует в передаче болевых стимулов в качестве возбуждающего нейромедиатора в синапсах между центральными отростками чувствительных нейронов спинномозгового узла и перикарионами нейронов спиноталамического пути. Блокирование секреции вещества Р и снятие болевых ощущений реализуются через рецепторы опиоидных пептидов, встроенных в мембрану терминали центрального отростка чувствительного нейрона (пример феномена пресинаптического торможения). Источник опиоидного пептида - вставочный нейрон.

    Рис . 9–8 . Путь проведения болевых импульсов (стрелки). Вещество Р передаёт возбуждение с центрального отростка чувствительного нейрона на нейрон спиноталамического тракта. Через опиоидные рецепторы энкефалин из вставочного нейрона тормозит секрецию вещества Р из чувствительного нейрона и проведение болевых сигналов. [ 11 ].

    Проведение медленной хронической боли

    Центральные отростки чувствительных нейронов оканчиваются на нейронах пластин II и III. Длинные аксоны вторых нейронов переходят на другую сторону спинного мозга и в составе переднебокового канатика поднимаются в головной мозг. Эти волокна, проводящие сигналы медленной хронической боли в составе палеоспиноталамического тракта, имеют обширные синаптические связи в стволе мозга, оканчиваясь в ретикулярных ядрах продолговатого мозга, моста и среднего мозга, в таламусе, в области покрышки и в сером веществе, окружающем сильвиев водопровод. Из мозгового ствола болевые сигналы поступают к внутрипластинчатым и вентролатеральным ядрам таламуса, гипоталамусу и другим структурам основания мозга (рис. 9–7Б).

    · Локализация медленной хронической боли . Медленная хроническая боль локализуется не в отдельных точках тела, а в его больших частях, таких как рука, нога, спина и т.д. Это объясняется полисинаптическими, диффузными связями путей, проводящих медленную боль.

    · Центральная оценка медленной боли . Полное удаление соматосенсорной коры у животных не нарушает у них способности ощущать боль. Следовательно, болевые импульсы, входящие в мозг через ретикулярную формацию мозгового ствола, таламус и другие нижележащие центры, могут вызывать осознанное восприятие боли. Соматосенсорная кора участвует в оценке качества боли.

    · Нейромедиатор медленной боли в окончаниях C‑волокон - . Болевые волокна типа C, входящие в спинной мозг, в своих окончаниях выделяют нейромедиаторы глутамат и вещество P. Глутамат действует в течение нескольких миллисекунд. Вещество P выделяется медленнее, его действующая концентрация достигается в течение секунд и даже минут.

    Система подавления боли

    Организм человека не только ощущает и определяет силу и качество болевых сигналов, но и способен понижать и даже подавлять активность болевых систем. Диапазон индивидуальной реакции на боль необыкновенно широк, и ответная реакция на боль в немалой степени зависит от способности мозга подавлять поступающие в нервную систему болевые сигналы при помощи антиноцицептивной (аналгезирующая, антиболевая) системы. Антиноцицептивная система (рис. 9–7Б) состоит из трёх основных компонентов.

    1 . Комплекс торможения боли , расположенный в задних рогах спинного мозга. Здесь боль блокируется до того, как она достигнет воспринимающих отделов мозга.
    2 . Большое ядро шва , расположенное по срединной линии между мостом и продолговатым мозгом; ретикулярное парагигантоклеточное ядро , расположенное в боковом отделе продолговатого мозга. Из этих ядер сигналы поступают по заднебоковым столбам в спинной мозг.
    3 . Околоводопроводное серое вещество и перивентрикулярная область среднего мозга и верхнего отдела моста, окружающие сильвиев водопровод и частично третий и четвёртый желудочки. Нейроны из этих аналгезирующих областей посылают сигналы к большому ядру шва и ретикулярному парагигантоклеточному ядру.
    Электрическая стимуляция околоводопроводного серого вещества или большого ядра шва почти полностью подавляет болевые сигналы, идущие через задние корешки спинного мозга. В свою очередь, стимуляция вышележащих структур мозга возбуждает перивентрикулярные ядра и переднемозговой медиальный пучок гипоталамуса и тем самым вызывает аналгезирующий эффект.

    · Нейромедиаторы антиноцицептивной системы . Медиаторами, выделяющимися в окончаниях нервных волокон обезболивающей системы, являются и. Различные отделы аналгезирующей системы чувствительны к морфину, опиатам и опиоидам (b -эндорфину, энкефалинам, динорфину). В частности, энкефалины и динорфин были найдены в структурах аналгезирующей системы мозгового ствола и спинного мозга.

    С нейронами большого ядра шва образуют синапсы нервные волокна, содержащие. Аксоны этих нейронов заканчиваются в задних рогах спинного мозга и выделяют из своих окончаний. Серотонин, в свою очередь, возбуждает энкефалинергические нейроны задних рогов спинного мозга (рис. 9–8). Энкефалин вызывает пресинаптическое торможение и постсинаптическое торможение в области синапсов болевых волокон типов C и A d в задних рогах спинного мозга. Предполагается, что пресинаптическое торможение возникает в результате блокады кальциевых каналов в мембране нервных окончаний.

    Центральное торможение и отвлекающее раздражение
    · С позиций активации противоболевой системы находит объяснение хорошо известный факт забывания боли раненым во время боя (стресс-аналгезия), и известное многим из личного опыта снижение боли при поглаживании или вибрации повреждённого участка тела.
    · Стимуляция электрическим вибратором болевого места также приводит к некоторому облегчению боли. Акупунктура используется более 4000 лет для предотвращения или облегчения боли, а в ряде случаев под иглоукалыванием проводятся большие хирургические операции.
    · Торможением болевых сигналов в центральных сенсорных путях можно объяснить и эффективность отвлекающего раздражения, применяемого при стимуляции кожи в области воспаления внутреннего органа. Так, горчичники и перцовые пластыри работают по этому принципу.

    Отражённая боль

    Раздражение внутренних органов часто вызывает боль, которая ощущается не только во внутренних органах, но и в некоторых соматических структурах, находящихся достаточно далеко от места вызова боли. Такая боль называется отражённой (иррадиирующей).

    Наиболее известным примером отражённой боли является сердечная боль, иррадиирующая в левую руку. Однако будущий врач должен знать, что участки отражения боли не являются стереотипными, а необычные области отражения наблюдаются довольно часто. Сердечная боль, например, может быть чисто абдоминальной, она может иррадиировать в правую руку и даже в шею.

    Правило дерматомеров . Афферентные волокна от кожи, мышц, суставов и внутренних органов входят в спинной мозг по задним корешкам в определённом пространственном порядке. Кожные афферентные волокна каждого заднего корешка иннервируют ограниченную область кожи, называемую дерматомером (рис. 9–9). Отражённая боль обычно возникает в структурах, развивающихся из одного и того же эмбрионального сегмента, или дерматомера. Этот принцип называется «правилом дерматомера». Например, сердце и левая рука имеют одну и ту же сегментарную природу, а яичко мигрировало со своим нервным снабжением из урогенитального валика, из которого возникли почки и мочеточники. Поэтому не удивительно, что боль, возникшая в мочеточниках или почках, иррадиирует в яичко.

    Рис . 9 – 9 . Дерматомеры

    Конвергенция и облегчение в механизме возникновения отражённой боли

    В развитии отражённой боли принимают участие не только висцеральные и соматические нервы, входящие в нервную систему на одном сегментарном уровне, но и большое количество сенсорных нервных волокон, проходящих в составе спиноталамических путей. Это создаёт условия для конвергенции периферических афферентных волокон на таламических нейронах, т.е. соматические и висцеральные афференты конвергируют на одних и тех же нейронах (рис. 9–10).

    · Теория конвергенции . Большая скорость, постоянство и частота информация о соматической боли способствует закреплению мозгом информации о том, что сигналы, поступающие в соответствующие нервные пути, вызваны болевыми стимулами в определённых соматических областях тела. Когда те же нервные пути возбуждаются активностью висцеральных болевых афферентных волокон, то сигнал, достигающий мозга, не дифференцируется, и боль проецируется на соматическую область тела.

    · Теория облегчения . Другая теория происхождения отражённой боли (так называемая теория облегчения) основывается на предположении, что импульсация от внутренних органов понижает порог спиноталамических нейронов к воздействиям афферентных болевых сигналов из соматических областей . В условиях облегчения даже минимальная болевая активность из соматической области проходит в мозг.

    Рис . 9 – 10 . Отражённая боль

    Если конвергенция - единственное объяснение происхождения отражённой боли, то местная анестезия области отражённой боли не должна оказывать никакого влияния на боль. С другой стороны, если подпороговые облегчающие влияния участвуют в возникновении отражённой боли, то боль должна исчезнуть. Действие местной анестезии на область отражённой боли варьирует. Тяжелая боль обычно не проходит, боль умеренная может полностью прекращаться. Следовательно, оба фактора - конвергенция и облегчение - участвуют в возникновении отражённой боли.

    Необычная и продолжительная боль

    У некоторых людей повреждение и болезнетворный процесс, травмирующий периферические нервы, вызывает тяжёлое, истощающее и ненормально устойчивое болевое ощущение.
    · Гипералгезия , при которой стимулы, ведущие обычно к умеренному чувству боли, вызывают тяжелую, длительную боль.
    · Каузалгия - стойкое ощущение жжения, развивающееся обычно после сосудистого поражения чувствительных волокон периферического нерва.
    · Аллодиния - болевые ощущения, при которых нейтральные стимулы (например, лёгкое дуновение ветра или касание одежды причиняют интенсивную боль).
    · Гиперпатия - болевое ощущение, при котором болевой порог повышен, но при его достижении вспыхивает интенсивная, жгучая боль.
    · Фантомная боль представляет собой болевое ощущение в отсутствующей конечности.

    Причины этих болевых синдромов окончательно не установлены, но известно, что эти виды боли не уменьшаются при местной анестезии или перерезке нерва. Экспериментальные исследования указывают на то, что повреждение нерва приводит к интенсивному разрастанию и ветвлению норадренергических нервных волокон в чувствительных ганглиях, откуда выходят задние корешки по направлению к повреждённой области. По-видимому, симпатические разряды способствуют появлению необычных болевых сигналов. Таким образом, на периферии возникает замкнутый круг. Относящиеся к нему повреждённые нервные волокна стимулируются норадреналином на уровне задних корешков. a -Адренергическая блокада уменьшает болевые каузалгические ощущения.

    Таламический синдром . Спонтанная боль может возникать на уровне таламуса. При таламическом синдроме имеется повреждение задних таламических ядер, обычно вызываемое закупоркой ветвей задней мозговой артерии. Пациенты с этим синдромом имеют приступы продолжительных и тяжелых, исключительно неприятных болей, возникающих спонтанно или в ответ на различные сенсорные стимулы.

    Боль можно снять применением адекватных доз анальгетиков, но это происходит не во всех случаях. Для смягчения непереносимых болей используется метод хронического раздражения дорсальных корешков имплантированными электродами. Электроды соединены с портативным стимулятором, и пациент может сам себя стимулировать в необходимых случаях. Облегчение от боли достигается, по всей видимости, антидромным проведением импульсов через коллатерали к антиболевой системе задних корешков. Самостимуляция околоводопроводного серого вещества также помогает уменьшить нестерпимые боли, вероятно, за счёт выделения .

    Висцеральная боль

    В практической медицине боль, возникающая во внутренних органах, является важным симптомом воспаления, инфекционных болезней и других нарушений. Любой стимул, который чрезмерно возбуждает нервные окончания во внутренних органах, вызывает боль. К ним относятся ишемия висцеральной ткани, химическое повреждение поверхности внутренних органов, спазм гладкой мускулатуры полых органов, растяжение полых органов и растяжение связочного аппарата. Все виды висцеральной боли передаются через болевые нервные волокна, проходящие в составе вегетативных нервов, преимущественно симпатических. Болевые волокна представлены тонкими C‑волокнами, проводящими хроническую боль.

    Причины висцеральной боли

    · Ишемия вызывает боль в результате образования кислых продуктов метаболизма и продуктов распада тканей, а также и протеолитических ферментов, раздражающих болевые нервные окончания.

    · Спазм полых органов (таких как участок кишки, мочеточника, жёлчного пузыря, жёлчных протоков и др.) вызывает механическое раздражение болевых рецепторов. Иногда механическое раздражение комбинируется с ишемией, вызванной спазмом. Часто болевые ощущения из спазмированного органа приобретают форму острейшего спазматического приступа, нарастающего до определённой степени, а затем постепенно убывающего.

    · Химическое раздражение может возникать в тех случаях, когда повреждающие вещества поступают из ЖКТ в брюшную полость. Попадание желудочного сока в брюшную полость охватывает обширную зону раздражения болевых рецепторов и порождает нестерпимо острую боль.
    · Перерастяжение полых органов раздражает механически болевые рецепторы и нарушает кровоток в стенке органа.

    Головная боль

    Головная боль является разновидностью отражённой боли, воспринимаемой как болевое ощущение, возникающее на поверхности головы. Многие виды болей возникают от болевых стимулов внутри черепа, другие - от раздражителей, расположенных снаружи черепа.

    Головные боли внутричерепного происхождения

    · Чувствительные к боли области внутри черепа . Сам мозг полностью лишен болевой чувствительности. Даже разрез или электрическая стимуляция сенсорной области коры только случайно могут вызвать боль. Вместо боли в областях, представленных в соматосенсорной зоне коры, возникают ощущения лёгкого покалывания - парестезии. Следовательно, вряд ли большинство головных болей вызвано повреждениями паренхимы мозга.

    · Давление на венозные синусы , окружающие мозг, повреждение мозжечкового намёта или растяжение твёрдой мозговой оболочки в области основания мозга могут вызывать интенсивные боли, определяемые как головная боль. Все виды травматизации (раздавливание, растяжение, скручивание сосудов мозговых оболочек) вызывают головную боль. Особенно чувствительны структуры средней мозговой артерии.

    · Менингеальные боли - наиболее тяжёлый вид головных болей, возникающих при воспалительных процессах мозговых оболочек и отражающихся по всей поверхности головы.
    · Боли при снижении давления в спинномозговой жидкости возникают из–за уменьшения количества жидкости и растягивания весом самого мозга мозговых оболочек.

    · Боль при мигрени возникает в результате спастических сосудистых реакций. Считают, что мигрень появляется в результате длительных эмоций или напряжения, вызывающих спазм некоторых артериальных сосудов головы, включающих и сосуды, снабжающие мозг. В результате ишемии, вызванной спазмом, наступает потеря тонуса сосудистой стенки длительностью от 24 до 48 час. Пульсовые колебания АД более интенсивно растягивают расслабленные атоничные сосудистые стенки артерий, и это перерастяжение стенок артерий, включая и экстракраниальные (например, височные артерии) приводит к приступу головной боли.

    Происхождение мигрени объясняют также эмоциональными отклонениями, приводящими к распространяющейся корковой депрессии. Депрессия вызывает локальное накопление ионов калия в ткани мозга, инициирующее сосудистый спазм.

    · Алкогольная боль вызвана прямым токсическим раздражающим действием ацетальдегида на мозговые оболочки.

    Головные боли внечерепного происхождения

    · Головные боли в результате мышечного спазма возникают при эмоциональном напряжении многих мышц, прикреплённых к черепу и плечевому поясу. Боль отражается по поверхности головы и напоминает внутричерепную боль.
    · Головные боли при раздражении носовой полости и придаточных пазух носа не обладают большой интенсивностью и отражаются на фронтальной поверхности головы.

    · Головные боли при нарушениях функции глаз могут возникать при сильных сокращениях ресничной мышцы, при попытках добиться лучшего видения. Это может вызывать рефлекторный спазм лицевых и наружных глазных мышц и появление головной боли. Второй вид боли может наблюдаться при «ожогах» сетчатки ультрафиолетовым излучением, а также при раздражении конъюнктивы.

    Д.м.н. А.Л. Кривошапкин.

    Королевский медицинский центр. Великобритания.

    Western literature review, tutorial, A.L. Krivoshapkin MD., PhD, PHYSIOLOGIA OF PAIN, Current concepts and mechanisms, Queen’s Medical Centre, Great Britain.

    “Omne animal, simul atque natum sit, voluptatem appetere eaque gaudere ut summo bono, dolorem aspernari ut summum malum et.”

    Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Таким образом, боль представляет собой как предупредительную так и защитную систему.

    В настоящее время наиболее популярным считается определение боли, данное Международной Ассоциацией по изучению боли (Merskey,Bogduk,1994): “Боль это неприятное ощущение и эмоциональное переживание, возникающее в связи с настоящей или потенциальной угрозой повреждения тканей или изображаемой терминами такого повреждения “.Такое определение не оценивает природу и происхождение болевого стимула, но в равной степени указывает как на её аффективные коннотации, так и на осознанную интерпретацию.

    Первые научные концепции физиологии боли появились в первых десятилетиях 19-го столетия. Это был век прорывов в изучении механизмов боли, позволившие учёным не только лучше понять боль, но иногда и облегчить её.

    В 20-м веке достижения иммуногистохимии, нейрофармакологии и нейрофизиологии позволили совершить воистину величайшие открытия в анатомии, физиологии и патофизиологии боли (Rosenov,1996). В течение последних 20 лет заметно повышается интерес к фундаментальным механизмам боли. Находки, обнаруженные в результате этих исследований, нашли применение в клинике и ряде прикладных программ различных областей медицины. Идентификация рецепторов и процессов, участвующих в формировании и передаче боли привели к применению новых средств и методов, обеспечивающих новые и всё более эффективные подходы к контролю над болью. Они включают использование предварительной анальгезии (Chaumont et al,1994) опиоидами или ненаркотическими (нестероидными противовоспалительными) средствами, агонистами альфа-2- адренергических рецепторов (Motsch et al.,1990) и местными анестетиками (Enck,1995, Munglani et al,1995), контролируемую пациентом анальгезию в послеоперационном периоде или введение опиоидов посредством управляемого пациентом устройства (Hopf,Weitz,1995), модуляцию боли биогенными аминами, такими как эндогенные опиоидные пептиды, использование интратекального введения препаратов при контролируемой пациентом эпидуральной анальгезии (Blanko et al, 1994,Greenland,1995), эпидуральную стимуляцию спинного мозга (Siddal, Cousins,1995).

    “Every living being from its very moment of birth seeks pleasure,enjoying it as the ultimate good while rejecting pain as the ultimate adversity “ (Racine, “Aurelien in Aragon).

    Новые технологии и новые средства позволили более эффективно управлять болью. Применение подобных методов привело к удовлетворению пациентов и улучшению клинических результатов. Наши предки вынуждены были верить моралистам (и докторам), убеждавшим их в необходимости и полезности болевого ощущения и запрещающим применять такие противоестественные средства, как анестетики при родах. Сегодня врачи при проведении диагностических процедур или операций не могут позволить своим пациентам страдать “для их собственного благополучия”. Состояние боли является решающим основанием для назначения эффективного лечения, что является следствием глубокого убеждения в существенном негативном влиянии боли на качество жизни (Muriithi,Chindia,1993).

    ПУТИ ПРОВЕДЕНИЯ БОЛИ И ЕЁ МЕХАНИЗМЫ.

    Болевые рецепторы.

    Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга. Техника микронейрографии сделала возможным утверждать наличие у человека двух таких же типов рецепторов боли (ноцицепторов), как и у других млекопитающих. Анатомически первый тип ноцицепторов представлен свободными нервными окончаниями, разветвлёнными в виде дерева (миелиновые волокна). Они представляют собой быстрые А - дельта волокна, проводящие раздражение со скоростью 6 - 30 м\с. Эти волокна возбуждаются высокоинтенсивными механическими (булавочный укол) и, иногда, термическими раздражениями кожи. А - дельта ноцицепторы располагаются, преимущественно, в коже, включая оба конца пищеварительного тракта. Находятся они также и в суставах. Трансмиттер А - дельта волокон остаётся неизвестным.

    Другой тип ноцицепторов представлен плотными некапсулированными гломерулярными тельцами (немиелиновые С - волокна, проводящие раздражение со скоростью 0,5 - 2 м\с). Эти афферентные волокна у человека и других приматов представлены полимодальными ноцицепторами, поэтому реагируют как на механические,так на температурные и химические раздражения. Они активируются химическими веществами, возникающими при повреждении тканей, являясь одновременно и хеморецепторами, и считаются со своей эволюционной примитивностью оптимальными тканеповреждающими рецепторами. С - волокна распределяются по всем тканям за исключением центральной нервной системы. Однако, они присутствуют в периферических нервах, как nervi nervorum. Волокна, имеющие рецепторы, воспринимающие повреждения тканей, содержат субстанцию Р, выступающую в качестве трансмиттера. Такой тип ноцицепторов также содержит calcitonin ген - связанный пептид, а волокна из внутренних органов - вазоактивный интестинальный пептид (Nicholls et al,1992).

    Задние рога спинного мозга.

    Большинство “болевых волокон” достигают спинного мозга через спинномозговые нервы (в случае, если они отходят от шеи, туловища и конечностей) или входят в продолговатый мозг в составе тройничного нерва. Проксимально от спиномозгового ганглия перед вхождением в спинной мозг задний корешок разделяется на медиальную, содержащую толстые миелиновые волокна, и латеральную части, в состав которой входят тонкие миелиновые (А - дельта) и немиелиновые (С) волокна (Sindou, et al.,1975),что предоставляет возможность хирургу с помощью операционного микроскопа, произвести их функциональное разделение. Однако известно, что проксимальные аксоны примерно 30% С - волокон после выхода из спинномозгового ганглия возвращаются обратно к месту совместного хода чувствительных и двигательных корешков (канатик) и входят в спинной мозг через передние корешки(Coggeshall et al,1975). Этот феномен, вероятно, объясняет причину неэффективности попыток дорзальной ризотомии, предпринимаемой для облегчения боли (Blumenkopf,1994). Но, тем не менее, поскольку все С - волокна, размещают свои нейроны в спинномозговом ганглии, цель может быть, достигнута ганглиолизисом (Nash,19986). При вхождении ноцицептивных волокон в спинной мозг, они разделяются на восходящие и нисходящие ветви. Перед своим окончанием в сером веществе задних рогов эти волокна могут направляться к нескольким сегментам спинного мозга. Разветвляясь, они формируют связи с другими многочисленными нервными клетками. Таким образом, термин “заднероговой комплекс” используется для обозначения данной нейроанатомической структуры. Ноцицептивной информацией прямо или косвенно активируются два основных класса релейных заднероговых клеток: “ноцицептивные специфические” нейроны, активируемые только ноцицептивными стимулами и “wide dynamic range” или “конвергентные” нейроны, активируемые также и не ноцицептивными стимулами. На уровне задних рогов спинного мозга большое число первичных афферентных раздражений передаются через интернейроны или ассоциативные нейроны, чьи синапсы облегчают, либо препятствуют передаче импульсов. Периферический и центральный контроль локализуется в желатинозной субстанции, примыкающей к клеточному слою.

    Воротный контроль, как внутренний спинальный механизм.

    Теория “воротного контроля” - одна из наиболее плодотворных концепций механизмов боли (Melzack,Wall,1965),хотя её анатомические и физиологические основы до сих пор не являются полностью отработанными (Swerdlow,Charlton,1989). Основное положение теории состоит в том, что импульсы, проходящие по тонким (“болевым”) периферическим волокнам открывают “ворота” в нервную систему, чтобы достичь её центральных отделов. Два обстоятельства могут закрыть ворота: импульсы, проходящие по толстым (“тактильным”) волокнам и определённые импульсы, нисходящие из высших отделов нервной системы. Механизм действия толстых периферических волокон, закрывающих ворота, заключается в том, что боль, возникающая в глубоких тканях, таких как мышцы и суставы, уменьшается контрраздражением, - механическим растиранием поверхности кожи или использованием раздражающих мазей (Barr,Kiernan,1988). Эти свойства имеют терапевтическое применение, например использование высокочастотного, низко интенсивного электрического раздражения толстых кожных волокон (Wall,Sweet,1967),известного, как чрезкожная электронейростимуляция (ЧЭНС), или вибрационной стимуляции (Lunderberg,1983). Второй механизм (закрытие ворот изнутри) вступает в действие в случае активации нисходящих тормозных волокон из ствола мозга, либо их прямой стимуляцией, либо гетеросегментарной акупунктурой (низкочастотная высокоинтенсивная периферическая стимуляция). В этом случае нисходящие волокна активируют интернейроны, расположенные в поверхностных слоях задних рогов, постсинаптически ингибирующих желатинозные клетки, предотвращая тем самым передачу информации выше (Swerdlow, Charlton ,1989).

    Опиоидные рецепторы и механизмы.

    Открытие опиоидных пептидов и опиоидных рецепторов относится к началу 70х годов. В 1973 г. три исследовательские группы (Hughes, Kosterlitz, Yaksh) определили места приложения морфина, а двумя годами позже другие две группы открыли локализацию природных пептидов, имитирующих действие морфина. Клиническое значение имеют три класса опиоидных рецепторов: мю -, каппа - и дельта - рецепторы (Kosterlitz,Paterson,1985). Их распределение внутри ЦНС очень вариабильно. Плотное размещение рецепторов обнаружено в задних рогах спинного мозга, в среднем мозге и таламусе. Иммуноцитохимические исследования показали наибольшую концентрацию спинальных опиоидных рецепторов в поверхностных слоях задних рогов спинного мозга. Эндогенные опиоидные пептиды (энкефалин,эндорфин,динорфин) взаимодействуют с опиоидными рецепторами всякий раз, когда в результате преодоления болевого порога возникают болевые раздражения. Факт расположения множества опиоидных рецепторов в поверхностных слоях спинного мозга означает, что опиаты могут легко проникать в него из окружающей спинномозговой жидкости. Экспериментальные наблюдения (Yaksh,Rudy,1976) прямого спинального действия опиатов привели к возможности их терапевтического применения методом интратекального (Wang,1977) и эпидурального (Bromage et al,1980) введения.

    Известно, что для подавления гипервозбудимости спинальных нейронов требуются большие дозы морфина. Однако если малые дозы морфина назначать непосредственно перед повреждающей стимуляцией, то триггерная центральная гипервозбудимость никогда не формируется (Woolf,Wall,1986). В настоящее время стало ясно, что предварительное лечение позволяет предупредить сильную послеоперационную боль (Wall,Melzack,1994).

    Восходящие пути боли.

    Давно известно, что восходящие “болевые пути” находятся в составе переднебоковых канатиков белого вещества спинного мозга и идут контрлатерально стороне вхождения болевых стимулов (Spiller,1905). Так же хорошо известно, что часть волокон спиноталамического и спиноретикулярного трактов, проводящих болевое раздражение, присутствует в заднебоковом канатике (Barr,Kiernan,1988).Трактотомия или хирургическое пересечение переднебоковой области спинного мозга, включающей спиноталамические и спиноретикулярные пути, приводит к почти полной потере способности ощущать боль на противоположной стороне тела ниже уровня повреждения (Kaye,1991). Однако обычно, чувствительность в течение нескольких недель постепенно восстанавливается, что объясняется синаптической реорганизацией и вовлечением неповреждённых альтернативных путей. Комиссуральная миелотомия вызывает пролонгированную анальгезию в поражённых сегментах.

    Спиноталамический тракт может быть, разделён на две части:

    1. Неоспиноталамический тракт (быстрое проведение, моносинаптическая передача, хорошо локализованная (эпикритическая) боль, А - волокна). Этот тракт направляется к специфическим латеральным ядрам таламуса (вентрозаднелатеральное и вентрозаднемедиальное ядра).
    2. Палеоспиноталамическая система (полисинаптическая передача, медленное проведение, плохо локализованная (протопатическая) боль, С - волокна). Данные пути восходят к неспецифическим медиальным таламическим ядрам (медиальное ядро, интраламинарное ядро, срединный центр). На своём пути к медиальным ядрам таламуса тракт направляет часть волокон к ретикулярной формации.

    Стереотаксические электроды, расположенные в таламусе, позволяют распознать специфическую патофизиологию этих структур и развить концепцию, основанную на наличии баланса между медиальным (в основном nucl.centralis lateralis) и латеральным (nucl. ventroposterior) ядрами таламуса, нарушение которого ведёт к сверхторможению их обоих ретикулярным таламическим ядром, а затем к парадоксальной активации корковых полей, связанных с болевым ощущением. Возобновление с учётом новых технических, анатомических и физиологических данных медиальной стереотаксической таламотомии приносит облегчение двум третям больных с хронической и терапевтически резистентной периферической и центральной нейрогенной болью на 50 - 100% (Jeanmonod et al.,1994).

    Импульсы входящие через неоспиноталамическую систему переключаются на волокна, передающие сигналы через заднее бедро внутренней капсулы к первой соматосенсорной зоне коры, постцентральной извилине и второй соматосенсорной зоне (operculum parietal). Высокая степень топической организации внутри латерального ядра таламуса делает возможным пространственную локализацию боли. Изучения тысяч корковых поражений в обеих мировых войнах демонстрируют, что повреждения постцентральной извилины никогда не вызывает потери болевой чувствительности, хотя ведут к потере соматотопически организованной низкопороговой механорецептивной чувствительности, также как и ощущения укола иглой (Bowsher,1987).

    Импульсы, входящие через палеоспиноталамический тракт, переключаются на медиальное ядро таламуса и проецируются на неокортекс диффузным способом. Проекция в лобной области отражает аффективные компоненты боли. Позитронно-эмиссионная томография показывает, что повреждающие стимулы активируют нейроны цингулярной извилины и орбитальной фронтальной коры (Jones et al,1991). Цингулотомия или префронтальная лоботомия показывают отличный эффект в лечении боли у онкологических больных (Freeman,Watts,1946). Таким образом, в головном мозге нет “болевого центра”, а восприятие и реакция на боль являются функцией ЦНС в целом (Diamond,Coniam,1991, Talbot et al,1991).

    Нисходящая модуляция боли.

    Известно, что микроинъекции морфина в периакведуктальное серое вещество (PAG)среднего мозга (Tsou,Jang,1964) (центральное серое вещество _ ЦСВ), также как и его электрическая стимуляция (Reynolds,1969) вызывает настолько глубокую анальгезию, что у крыс даже хирургические вмешательства не вызывают каких - либо заметных реакций. Когда были открыты области сосредоточения опиоидных рецепторов и естественных опиатов, стало понятно, что эти отделы ствола мозга являются релейной станцией супраспинальных нисходящих модуляторных контрольных систем. Вся система, как стало сейчас понятно, представляется следующим образом.

    Аксоны группы клеток, использующих В - эндорфин в качестве трансмиттера, расположенные в области nucl.arcuatus гипоталамуса (который сам находится под контролем префронтальной и островковой зон коры головного мозга) пересекают перивентрикулярное серое вещество в стенке третьего желудочка, оканчиваясь в периакведуктальном сером веществе (PAG). Здесь они ингибируют местные интернейроны, освобождая, таким образом, от их тормозного влияния клетки, чьи аксоны проходят вниз к области nucleus raphe magnum в середине ретикулярной формации продолговатого мозга. Аксоны нейронов этого ядра, преимущественно серотонинергических (трансмиттер - 5 - гидрокситриптамин), направляются вниз по дорсолатеральному канатику спинного мозга, заканчиваясь в поверхностных слоях заднего рога. Некоторая часть raphe - спинальных аксонов и значительное число аксонов из ретикулярной формации являются норадренергическими. Таким образом, как серотонинергические, так и норадренергические нейроны ствола мозга выступают как структуры, блокирующие ноцицептивную информацию в спинном мозге (Field,1987). Присутствие соединений биогенных аминов в контролирующих боль системах объясняет причину анальгезии, вызываемой трициклическими антидепрессантами. Эти препараты подавляют повторное поглощение серотонина и норадреналина синапсом и, таким образом, усиливают тормозное действие трансмиттеров на нейроны спинного мозга. Наиболее мощное торможение болевой чувствительности у животных вызывается прямой стимуляцией nucl.raphe magnus (ядра шва). У человека перивентрикулярное и периакведуктальное серое вещество представляют собой места, наиболее часто используемые для стимуляции через имплантируемые электроды для устранения боли (Richardson,1982). Упоминаемые выше коллатерали от спиноталамических аксонов к ретикулярной формации могут объяснить эффект гетеросегментарной акупунктуры, поскольку спинальные неспецифические нейроны могут быть активированы таким стимулом, как укол иглы (Bowsher,1987).

    КЛИНИЧЕСКАЯ КЛАССИФИКАЦИЯ БОЛИ.

    Боль можно классифицировать следующим образом:

    1. Ноцигенная
    2. Нейрогенная
    3. Психогенная

    Данная классификация может быть полезной для первоначальной терапии, однако, в дальнейшем подобное разделение групп невозможно из-за их тесного сочетания.

    Ноцигенная боль.

    Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Боль от внутренних органов возникает вследствие быстрого сокращения, спазма или растяжения гладких мышц, поскольку сами гладкие мышцы нечувствительны к жару, холоду или рассечению. Боль от внутренних органов, особенно имеющих симпатическую иннервацию, может ощущаться в определённых зонах на поверхности тела. Такая боль называется отражённой. Наиболее известные примеры отражённой боли - боль в правом плече и правой стороне шеи при поражении желчного пузыря, боль в нижней части спины при заболевании мочевого пузыря и, наконец, боль в левой руке и левой половине грудной клетки при заболеваниях сердца. Нейроанатомическая основа этого феномена не совсем понятна. Возможное объяснение состоит в том, что сегментарная иннервация внутренних органов та же, что и отдалённых областей поверхности тела. Однако это не объясняет причины отражения боли от органа к поверхности тела, а не vice versa. Ноцигенный тип боли терапевтически чувствителен к морфину и другим наркотическим анальгетикам и может контролироваться состоянием “ворот”.

    Нейрогенная боль

    Этот тип боли может быть, определён, как боль вследствие повреждения периферической или центральной нервной системы и не объясняется раздражением ноцицепторов. Такая боль имеет ряд особенностей, отличающих её, как клинически, так и патофизиологически от ноцигенной боли (Bowsher,1988):

    1. Нейрогенная боль имеет характер дизестезии. Хотя дескрипторы: тупая, пульсирующая или давящая являются наиболее частыми для подобной боли, патогномоничными характеристиками для неё считаются определения: обжигающая и стреляющая.
    2. В огромном большинстве случаев нейрогенной боли отмечается частичная потеря чувствительности.
    3. Характерны вегетативные расстройства, такие как снижение кровотока, гипер и гипогидроз в болевой области. Боль часто усиливает или сама вызывает эмоционально-стрессовые нарушения.
    4. Обычно отмечается аллодиния (означающая болевое ощущение в ответ на низко интенсивные, в нормальных условиях не вызывающие боли раздражители). Например, лёгкое прикосновение, дуновение воздуха или причёсывание при тригеминальной невралгии вызывает в ответ “болевой залп” (Kugelberg,Lindblom,1959). Более ста лет назад Trousseau (1877) отметил сходство между пароксизмальной стреляющей болью при тригеминальной невралгии и эпилептическими припадками. В настоящее время известно, что все стреляющие нейрогенные боли могут лечиться антиконвульсантами (Swerdlow,1984).
    5. Необъяснимой характерной чертой даже резкой нейрогенной боли является то, что она не мешает засыпанию пациента. Однако если даже больной засыпает, он внезапно просыпается от сильной боли.
    6. Нейрогенная боль невосприимчива к морфину и другим опиатам в обычных анальгетических дозах. Это демонстрирует то, что механизм нейрогенной боли отличен от опиоид-чувствительной ноцигенной боли.

    Нейрогенная боль имеет много клинических форм. К ним можно отнести некоторые поражения периферической нервной системы, такие как постгерпетическая невралгия, диабетическая невропатия, неполное повреждение периферического нерва, особенно срединного и локтевого (рефлекторная симпатическая дистрофия), отрыв ветвей плечевого сплетения. Нейрогенная боль вследствие поражения центральной нервной системы обычно бывает обусловлена цереброваскулярной катастрофой. Это то, что известно под классическим названием “таламического синдрома”, хотя недавние исследования показывают, что в большинстве случаев очаги поражения расположены в иных областях, чем таламус (Bowsher et al.,1984).

    Многие боли клинически проявляются смешанными - ноцигенными и нейрогенными элементами. Например, опухоли вызывают повреждение тканей и компрессию нервов; при диабете ноцигенная боль возникает вследствие поражения периферических сосудов, нейрогенная - вследствие нейропатии; при грыжах межпозвонкового диска,компримирующих нервный корешок, болевой синдром включает жгучий и стреляющий нейрогенный элемент.

    Психогенная боль.

    Утверждение что боль может быть исключительно психогенного происхождения, является дискуссионным. Широко известно, что личность пациента формирует болевое ощущение. Оно усилено у истерических личностей, и более точно отражает реальность у пациентов неистероидного типа.

    Люди различных этнических групп отличаются по восприятию послеоперационной боли. Пациенты европейского происхождения отмечают менее интенсивную боль, чем американские негры или латиноамериканцы. У них также отмечается низкая интенсивность боли по сравнению с азиатами, хотя эти отличия не очень значительны (Faucett et al,1994).

    Любое хроническое заболевание или недомогание, сопровождающееся болью, влияет на эмоции и поведение личности. Боль часто ведёт к появлению тревожности и напряжённости, которые сами увеличивают восприятие боли. Это поясняет важность психотерапии в контроле над болью. Биологическая обратная связь, релаксационный тренинг, поведенческая терапия и гипноз применяются в качестве психологического вмешательства и могут оказаться полезными в некоторых упорных, рефрактерных к лечению случаях (Bonica,1990,Wall.,Melzack,1994, Hart,Alden,1994).Лечение может быть более эффективным,если учитывает психологическую и другие системы (окружающую среду, психофизиологию, познавательную, поведенческую), которые потенциально влияют на болевое восприятие (Cameron,1982). Обсуждение психологического фактора хронической боли ведётся на основе теории психоанализа, с бихевиористских, когнитивных и психофизиологических позиций (Gamsa,1994).

    Некоторые люди более устойчивы к развитию нейрогенной боли. Поскольку эта тенденция имеет вышеупомянутые этнические и культуральные особенности, она кажется врождённой. Поэтому так заманчивы перспективы исследований, проводимых в настоящее время и направленных на поиск локализации и выделение “гена боли” (Rappaport,1996).

    Примечание:

    Я выражаю глубокую благодарность Mr.J.L.Firth , консультанту по нейрохирургии Королевского медицинского центра (Великобритания), за поддержку и неоценимую помощь в подготовке данного обзора.