2538 0

Основные сведения

Плевральный выпот часто представляет собой сложную диагностическую проблему для клинициста.

Аргументированный дифференциальный диагноз может быть построен на основе клинической картины и результатов исследования плевральной жидкости.

Для того чтобы максимально использовать данные, полученные при исследовании плевральной жидкости, клиницист должен хорошо представлять себе физиологические основы образования плеврального выпота.

Умение анализировать результаты исследования клеточного и химического состава выпота вместе с данными анамнеза, физикального обследования и дополнительных лабораторных методов исследования позволяет поставить предварительный или окончательный диагноз у 90% больных с плевральным выпотом.

Тем не менее следует отметить, что, как и всякий лабораторный метод, исследование плевральной жидкости чаще позволяет подтвердить предварительный диагноз, нежели выступает в качестве основного метода диагностики.

Окончательный диагноз, основанный на результатах этого метода исследования, можно поставить лишь при обнаружении в плевральной жидкости опухолевых клеток, микроорганизмов или LE-клетки.

Анатомия плевральной полости

Плевра покрывает легкие и выстилает внутреннюю поверхность грудной клетки . Она состоит из рыхлой соединительной ткани, покрыта одним слоем мезотелиальных клеток и разделяется на легочную (висцеральную) плевру и пристеночную (париетальную) плевру.

Легочная плевра покрывает поверхность обоих легких, а пристеночная плевра выстилает внутреннюю поверхность грудной стенки, верхнюю поверхность диафрагмы и средостение. Легочная и пристеночная плевра соединяются в области корня легкого (рис. 136).


Рис. 136. Схема анатомического строения легкого и плевральной полости.
Висцеральная плевра покрывает легкое; париетальная плевра выстилает грудную стенку, диафрагму и средостение. Они соединяются в области корня легкого.


Несмотря на сходное гистологическое строение, легочная н пристеночная плевра имеют два важных отличительных признака. Во-первых, пристеночная плевра снабжена чувствительными нервными рецепторами, которых нет в легочной плевре, во-вторых, пристеночная плевра легко отделяется от грудной стенки, а легочная плевра плотно спаяна с легким.

Между легочной и пристеночной плеврой имеется замкнутое пространство - плевральная полость. В норме во время вдоха в результате разнонаправленного действия эластической тяги легких и эластической тяги грудной клетки в плевральной полости создается давление ниже атмосферного.

Обычно в плевральной полости содержится от 3 до 5 мл жидкости, которая выполняет роль смазочного вещества во время вдоха и выдоха. При различных заболеваниях в плевральной полости может скапливаться несколько литров жидкости или воздуха.

Физиологические основы образования плевральной жидкости

Патологическое скопление плевральной жидкости является результатом нарушения перемещения плевральной жидкости. Перемещение плевральной жидкости в плевральную полость и из нее регулируется по принципу Старлинга.

Этот принцип описывает следующее уравнение:

ПЖ = К[(ГДкап- ГДпл) - (КОДкап - КОДпл)],
где ПЖ - перемещение жидкости, К - фильтрационный коэффициент для плевральной жидкости, ГДкап - гидростатическое капиллярное давление, ГДПЛ - гидростатическое давление плевральной жидкости, КОДкап - капиллярное онкотическое давление, КОДпл - онкотическое давление плевральной жидкости.

Поскольку пристеночная плевра снабжается веточками, отходящими от межреберных артерий, а венозный отток крови в правое предсердие осуществляется через систему непарной вены, гидростатическое давление в сосудах пристеночной плевры равно системному.

Гидростатическое давление в сосудах легочной плевры равно давлению в сосудах легких, так как она снабжается кровью от ветвей легочной артерии; венозный отток крови в левое предсердие осуществляется через систему легочных вен. Коллоидно-осмотическое давление в сосудах обоих плевральных листков связано с сывороточной концентрацией белка.

Кроме того, в норме небольшое количество белка, выходящего из капилляров плевры, захватывается расположенной в ней лимфатической системой. Проницаемость плевральных капилляров регулируется фильтрационным коэффициентом (К). При увеличении проницаемости содержание белка в плевральной жидкости увеличивается.

Из уравнения Старлинга следует, что перемещение жидкости в плевральную полость и из нее регулируется непосредственно гидростатическим и онкотическим давлениями. Плевральная жидкость по градиенту давления перемещается из системных сосудов пристеночной плевры, а затем реабсорбируется расположенными в легочной плевре сосудами малого круга кровообращения (рис. 137).



Рис. 137. Схема перемещения плевральной жидкости из париетальных капилляров в висцеральные капилляры в норме.
Абсорбции плевральной жидкости способствуют результирующие силы» обусловленные давлениями в висцеральной (10 см Н2О) и в париетальной плевре (9 см Н2О). Давление перемещающейся жидкости = К[(ГДкап-ГДплевр) - (КОДкап-КОДплевр)], где К - коэффициент фильтрации.


Подсчитано, что за 24 ч через плевральную полость проходит от 5 до 10 л плевральной жидкости.

Знание нормальной физиологии перемещения плевральной жидкости дает возможность объяснить некоторые положения, связанные с образованием плеврального выпота. Поскольку в нормальных условиях ежедневно образуется и реабсорбируется большое количество плевральной жидкости, при любом нарушении равновесия в системе вероятность образования патологического выпота возрастает.

Известно два механизма, приводящих к патологическому скоплению плевральной жидкости: нарушение давления, т.е. изменение гидростатического и (или) онкотического давления (застойная сердечная недостаточность, тяжелая гипопротеинемия) и заболевания, поражающие поверхность плевры и приводящие к нарушению капиллярной проницаемости (пневмония, опухоли) или нарушающие реабсорбцию белков лимфатическими сосудами (карциноматоз средостения).

Основываясь на данных патофизиологических механизмах, плевральный выпот можно подразделить на транссудат (возникает в результате изменения давления) и экссудат (возникает в результате нарушения капиллярной проницаемости).

Тейлор Р.Б.

Механизм возникновения отрицательного давления в плевральной полости может быть уяснен с помощью видоизмененной .

Если подобрать бутыль такого размера, какой соответствует размеру грудной клетки животного, и, поместив в эту бутыль его легкие, отсосать из нее воздух, то легкие займут почти весь ее объем. При этом давление в щелеобразном пространстве между стенкой бутыли и легкими станет несколько ниже атмосферного. Это объясняется тем, что растянутая эластическая ткань легких стремится сжаться. Сила, в которой сжимается эластическая ткань легкого - так называемая эластическая тяга легочной ткани, противодействует атмосферному давлению.

Явления, которые происходят в описанном варианте модели Дондерса, точно соответствуют тем, которые существуют в нормальных физиологических условиях при вдохе и выдохе. Легкие в грудной клетке всегда находятся в растянутом состоянии, причем растяжение легочной ткани увеличивается во время вдоха и уменьшается во время выдоха. Это является причиной отрицательного давления в плевральной полости и его возрастания на вдохе и уменьшения на выдохе. В том, что легкие действительно постоянно растянуты, можно убедиться, если вскрыть грудную полость: легкие при этом вследствие эластической тяги немедленно спадутся и займут примерно всего ⅓ грудной полости.

Растяжение легочной ткани зависит от того, что атмосферное давление действует на легкие только изнутри через воздухоносные пути и не действует на них снаружи благодаря неподатливости грудной стенки. Поэтому лёгкие находятся в грудной полости под односторонним давлением, которое, растягивая их, плотно прижимает к грудной стенке так, что они заполняют всю плевральную полость, следы которой остаются лишь в виде узкой плевральной щели, содержащей тонкий слой серозной жидкости.

Сила атмосферного давления затрачивается в некоторой мере на преодоление эластической тяги легких. Поэтому поверхность легких прижимается кгрудной стенке с меньшей силой, чем величина атмосферного давления. В результате давление в плевральной щели даже на выдохе меньше атмосферного на величину эластической тяги легких, т. е. примерно на 6 мм рт. ст.

Эластическая тяга легких обусловлена двумя факторами:

    наличием в стенке альвеол большого количества эластических волокон,

    поверхностным натяжением стенки альвеол.

Нейергард еще в 1929 г. показал, что около ⅔ , эластической тяги легких зависит от поверхностного натяжения стенки альвеол. С этим согласуются новые данные, показавшие, что легкие после разрушения их эластической ткани ферментом эластином сохраняют свои эластические свойства.

Так как силы поверхностного натяжения могут быть неодинаковы в разных альвеолах, то возможно спадение и слипание части из них во время выдоха за счет того, что другие альвеолы остаются растянутыми. Этого, однако, не происходит вследствие того, что внутренняя поверхность альвеол покрыта нерастворимой в воде, тонкой мономолекулярной пленкой вещества, названного сурфактаном (от англ. слова surface - поверхность). Сурфактан обладает малым поверхностным натяжением и препятствует полному спадению альвеол, стабилизируя их размеры. В случае отсутствия у новорожденного легкие не расправляются (ателектаз). Сурфактан представляет собой альфа-лецитин. Предполагают, что он образуется в митохондриях клеток альвеолярного эпителия. После перерезки обоих блуждающих нервов выработка его угнетается.

Измерение внутриплеврального давления у новорожденного показывает, что во время выдоха оно равно атмосферному и становится отрицательныи лишь во время вдоха.

Возникновение отрицательного давления в плевральной щели объясняется тем, что грудная клетка новорожденного растет быстрее, чем легкие, в силу чего легочная ткань подвергается постоянному (даже в положении выдоха) растяжению. В создании отрицательного давления в плевральной щели имеет значение еще то, что плевральные листки обладают большой всасывательной способностью. Поэтому газ, введенный в плевральную полость, через некоторое время всасывается и в плевральной полости восстанавливается отрицательное давление. Таким образом, имеется механизм, активно поддерживающий отрицательное давление в плевральной щели.

Отрицательное давление в грудной полости имеет большое значение для движения крови по венам. Стенки крупных вен, расположенных в грудной полости, легко растяжимы, и поэтому отрицательное давление в плевральной полости передается и на них. Отрицательное давление в полых венах является вспомогательным механизмом, облегчающим возврат крови к правому сердцу. Понятно, что при увеличении отрицательного давления во время вдоха усиливается и приток кропи к сердцу. Напротив, присильном натуживании и кашле внутригрудное давление настолько повышается, что венозный возврат крови может резко уменьшиться.


При рождении ребенка легкие еще не содержат воздуха и их собственный объем совпадает с объемом грудной полости. При первом вдохе сокращаются скелетные мышцы вдоха, объем грудной полости увеличивается.

Давление на легкие снаружи со стороны ірудной клетки уменьшается по сравнению с атмосферным. В силу этой разницы воздух свободно входит в легкие, растягивая их и прижимая наружную поверхность легких к внутренней поверхности грудной клетки и к диафрагме. При этом растянутыс легкие, обладая эластичностью, противодействуют растяжению. В результате на высоте вдоха легкие оказывают на грудную клетку изнутри уже не атмосферное давление, а меньшее на величину эластической тяги легких.
После рождения ребенка грудная клетка растет быстрее, чем ткань легкого. Так как
легкие оказываются под действием тех же сил, которые растягивали их при первом вдохе, они полностью заполняют грудную клетку как во время вдоха, так и во время выдоха, находясь постоянно в растянутом состоянии. В результате, давление легких на внутреннюю поверхность грудной клетки всегда меньше, чем давление воздуха в легких (на величину эластической тяги легких). При остановке дыхания в любой момент вдоха или выдоха в легких сразу же устанавливается атмосферное давление. При проколе с диагностической целью грудной клетки и париетальной плевры взрослого человека полой иглой, соединенной с манометром, и попадании конца иглы в плевральную полость, в манометре сразу же давление уменьшается ниже атмосферного. Манометр регистрирует в плевральной полости отрицательное давление по отношению к атмосферному, принимаемому" за ноль. Эта разница между давлением в альвеолах и давлением легких на внутреннюю поверхность грудной клетки, т.е. давление в плевральной полости, называется транспульмональным давлением.

Еще по теме ДАВЛЕНИЕ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ. МЕХАНИЗМ ЕГО ВОЗНИКНОВЕНИЯ.:

  1. КОЛЕБАНИЯ ДАВЛЕНИЯ В ПЛЕВРАЛЬНОЙ ПОЛОСТИ ПРИ ДЫХАНИИ. ИХ МЕХАНИЗМ.
  2. ДЫХАТЕЛЬНОЕ УПРАЖНЕНИЕ № I. МЕХАНИЗМЫ ЕГО ОЗДОРОВИТЕЛЬНОГО ВОЗДЕЙСТВИЯ. «СИЛЬНЫЕ» И «СЛАБЫЕ» СТОРОНЫ УПРАЖНЕНИЯ.

В организме человека каждый орган расположен отдельно: это необходимо для того, чтобы деятельность одних органов не мешала работе других, а также для того, чтобы замедлить быстрое распространение инфекции по организму. Роль такого «ограничителя» для легких выполняет серозная оболочка, состоящая из двух листков, пространство между которыми называется плевральная полость. Но защита легких – не единственная ее функция. Для того чтобы понять, что такое плевральная полость и какие задачи она выполняет в организме, необходимо подробно рассмотреть ее строение, участие в разных физиологических процессах, ее патологии.

Строение плевральной полости

Сама плевральная полость – это промежуток между двумя листками плевры, содержащий в себе небольшое количество жидкости. У здорового человека полость макроскопически не видна. Поэтому целесообразно рассматривать не саму полость, а ткани, которые ее образуют.

Листки плевры

Плевра имеет внутренний и наружный слой. Первый называют висцеральной оболочкой, второй – париетальной мембраной. Незначительное расстояние между ними и является плевральной полостью. Переход нижеописанных слоев из одного в другой происходит в области ворот легкого – упрощенно говоря, в том месте, где легкие соединяются с органами средостения:

  • сердцем;
  • вилочковой железой;
  • пищеводом;
  • трахеей.

Висцеральный слой

Внутренний слой плевры покрывает каждое легкое так плотно, что его невозможно отделить, не повреждая целостности легочных долей. Оболочка имеет складчатое строение, поэтому она способна разделять доли легких друг от друга, обеспечивая их легкое скольжение в процессе дыхания.

В этой ткани количество кровеносных сосудов превалирует над лимфатическими. Именно висцеральный слой продуцирует жидкость, заполняющую плевральную полость.

Париетальный слой

Наружный слой плевры срастается со стенками грудной клетки с одной стороны, а с другой, обращенной к плевральной полости, он покрыт мезотелием, который препятствует трению между висцеральным и париетальным слоем. Расположен приблизительно от точки на 1,5 см выше ключицы (купол плевры) до точки на 1 ребро ниже легкого.

Наружная часть париетального слоя имеет три зоны, в зависимости от того, с какими частями грудной полости она соприкасается:

  • реберная;
  • диафрагмальная;
  • средостенная.

В париетальном слое большое количество лимфатических сосудов, в отличие от висцерального слоя. При помощи лимфатической сети из плевральной полости выводятся белки, ферменты крови, различные микроорганизмы и другие плотные частицы, а также реабсорбируется лишняя париетальная жидкость.

Плевральные синусы

Расстояние между двумя париетальными оболочками называется плевральными синусами.

Их существование в организме человека обусловлено тем, что границы легких и плевральной полости не совпадают: объем последней больше.

Различают 3 вида синусов плевры, каждый из них следует рассмотреть подробнее.

  1. Реберно-диафрагмальный синус – расположен вдоль нижней границы легкого между диафрагмой и грудной клеткой.
  2. Диафрагмально-медиастинальный – расположен в месте перехода медиастинальной части плевры в диафрагмальную.
  3. Реберно-медиастинальный синус — расположен у переднего края левого легкого на протяжении сердечной вырезки, справа выражен очень слабо.

Реберно-диафрагмальный синус условно может считаться самым главным синусом, во-первых из-за своего размера, который может достигать 10 см (иногда и больше), во-вторых, потому что в нем скапливается патологическая жидкость при различных заболеваниях и травмах легких. Если человеку требуется легочная пункция, забор жидкости на исследование будет производиться путем прокола (пункции) именно диафрагмального синуса.

Другие два синуса имеют менее выраженное значение: они небольшие по размеру и не имеют значения в процессе диагностики, но с точки зрения анатомии знать об их существовании полезно.

Таким образом, синусы – это запасные пространства плевральной полости, «карманы», сформированные париетальной тканью.

Основные свойства плевры и функции плевральной полости

Поскольку плевральная полость является частью легочной системы, ее основной функцией является помощь в осуществлении процесса дыхания.

Давление в плевральной полости

Для понимания процесса дыхания нужно знать, что давление между внешним и внутренним слоем плевральной полости называют отрицательным, так как оно ниже уровня атмосферного давления.

Чтобы представить себе это давление и его силу, можно взять два кусочка стекла, намочить их и прижать друг к другу. Разделить их на два отдельных фрагмента будет сложно: стекло будет легко скользить, но убрать одно стекло от другого, разведя в две стороны, будет попросту невозможно. Именно за счет того, что в герметичной плевральной полости стенки плевры соединены и могут двигаться относительно друг друга только путем скольжения, и осуществляется процесс дыхания.

Участие в дыхании

Процесс дыхания может быть осознанным или нет, но его механизм одинаков, что можно увидеть на примере вдоха:

  • человек делает вдох;
  • его грудная клетка расширяется;
  • легкие расправляются;
  • воздух проникает в легкие.

После расширения грудной клетки незамедлительно следует расправление легких, потому что наружная часть плевральной полости (париетальная) соединена с грудной клеткой, а значит, при расширении последней следует за ней.

Из-за отрицательного давления внутри плевральной полости внутренняя часть плевры (висцеральная), которая плотно сцеплена с легкими, тоже следует за париетальным слоем, заставляя легкое расправляться и впускать в себя воздух.

Участие в кровообращении

В процессе дыхания отрицательное давление внутри плевральной полости влияет и на кровоток: при вдохе вены расширяются, и приток крови к сердцу увеличивается, при выдохе – приток крови уменьшается.

Но говорить о том, что плевральная полость является полноправным участником системы кровообращения — некорректно. То, что приток крови к сердцу и вдох воздуха синхронизирован, является лишь основанием для того, чтобы своевременно заметить попадание воздуха в кровоток из-за травмы крупных вен, выявить дыхательную аритмию, которая официально не является заболеванием и не причиняет своим обладателям никаких хлопот.

Жидкость в полости плевры

Плевральная жидкость – та самая жидкая серозная прослойка в капиллярах между двумя слоями плевральной полости, которая обеспечивает их скольжение и отрицательное давление, играющее ведущую роль в процессе дыхания. Ее количество в норме составляет около 10 мл для человека весом в 70 кг. Если плевральной жидкости будет больше нормы – она не даст легкому расправиться.

Кроме естественной плевральной жидкости, в легких могут скапливаться также и патологические.

Название Причина Симптомы
Транссудат – естественный выпот в плевральную полость, но количество жидкости при этом больше, чем требует физиологическая норма. Сердечная и почечная недостаточность, проведение перитонеального диализа, онкология, нарушение естественного процесса всасывания плевральной жидкости париетальным слоем. Одышка, боли в груди, сухой кашель.
Экссудат – жидкость в плевральной полости, появляющаяся в результате воспалительного процесса.

Выделяют:

Серозный Вирусы, аллергены. Лихорадка, отсутствие аппетита, головные боли, мокрый кашель, одышка, боли в груди.
Фиброзный туберкулез, онкология, эмпиема.
Гнойный Бактерии и грибки
Геморрагический Туберкулезный плеврит
Кровь Повреждение сосудов грудной клетки Тяжело дышать, слабость, обмороки, тахикардия.
Лимфа Повреждение лимфатического потока в листке плевры (чаще из-за травмы или хирургического вмешательства) Одышка, боль в груди, сухой кашель, слабость.

Устранение патологической жидкости из плевральной полости всегда предполагает проведение правильной диагностики, а затем – лечение причины возникновения симптома.

Патологии плевры

Патологическая жидкость может заполнять плевральную полость в результате разных заболеваний, иногда напрямую не связанных с дыхательной системой.

Если говорить о патологиях самой плевры, то можно выделить следующие:

  1. Спайки в плевральной области – образование спаек в плевральной полости, которые нарушают процесс скольжения слоев плевры и приводят к тому, что человеку тяжело и больно дышать.
  2. Пневмоторакс – скопление воздуха в плевральной полости в результате нарушения герметичности плевральной полости, из-за которого у человека появляется резкая боль в груди, кашель, тахикардия, чувство паники.
  3. Плеврит – воспаление плевры с выпадением фибрина или скоплением экссудата, (то есть сухой или выпотный плеврит). Возникает на фоне инфекций, опухолей и травм, проявляется в виде кашля, тяжести в груди, лихорадки.
  4. Осумкованный плеврит – воспаление плевры инфекционного генеза, реже – системных заболеваний соединительной ткани, при котором экссудат скапливается только в части плевры, будучи отделенным от остальной части полости плевральными спайками. Может протекать как без симптомов, так и с выраженной клинической картиной.

Диагностика патологий производится при помощи рентгена грудной клетки, компьютерной томографии, пункции. Лечение осуществляется преимущественно медикаментозным способом, иногда может потребоваться хирургическое вмешательство: откачивание воздуха из легких, выведение экссудата, удаление сегмента или доли легкого.

А. И. КИЕНЯ

ФИЗИОЛОГИЯ

ДЫХАНИЯ

Министерство здравоохранения Республики Беларусь

Гомельский государственный медицинский институт

Кафедра физиологии человека

А. И. КИЕНЯ

доктор биологических наук, профессор

ФИЗИОЛОГИЯ

ДЫХАНИЯ

Учебное пособие

Рецензенты:

Рузанов Д.Ю ., кандидат медицинских наук, заведующий кафедрой фтизиопульмонологии Гомельского государственного медицинского института.

Киеня А. И.

К38 Физиология дыхания: Учебное пособие.- Гомель.-2002 .- с.

В основу пособия положен материал лекций по разделу "Физиология дыхания" нормальной физиологии, читаемых автором студентам лечебного факультета и факультета по подготовке специалистов для зарубежных стран.

Для студентов, преподавателей, аспирантов ВУЗов медицинского и биологического профиля и смежных с ними специальностей.



© А. И.Киеня


ПРЕДИСЛОВИЕ

Настоящее пособие представляет собой конспективный текст лекций по разделу “Физиология дыхания” нормальной физиологии, читаемых автором студентам Гомельского государственного медицинского института. Материал пособия изложен в соответствии с Программой по нормальной физиологии для студентов лечебно-профилактического факультета высших медицинских учебных заведений № 08-14/5941, утвержденной Министерством здравоохранения Республики Беларусь от 3 сентября 1997 г.

В пособии представлены современные сведения о дыхании, как системе, обслуживающей метаболические процессы в организме. Рассматриваются основные этапы дыхания, механизмы дыхательных движений (вдоха и выдоха), роль отри-цательного давления в плевральной полости, вентиляция легких и легочные объемы и емкости, анатомическое и функциональное мертвое пространство, их физиологическое значение, процессы газообмена в легких, транспорт газов (О 2 и СО 2) кровью, факторы, влияющие на образование соединений гемоглобина с О 2 и СО 2 и их диссоциацию, газообмен между кровью и тканями. Рассматриваются нейрогуморальные механизмы регуляции дыхания, анализируется структурная организация дыхательного центра, роль газового состава и различных рецепторов в регуляции дыхания. Описываются особенности дыхания в разных условиях. Излагается механизм и теории возникновения первого вдоха новорожденного. Рассматриваются возрастные особенности дыхания.

Отдельно рассматриваются возрастные особенности системы дыхания.

В конце пособия представлены основные константы крови здорового человека.

При этом автор осознает, что в данном пособии в связи с небольшим его объемом не представилось возможным осветить подробно все аспекты физиологии дыхания, поэтому часть из них представлена в конспективном виде, более расширенные сведения о которых можно найти в приведенных в конце пособия источниках литературы.

Автор будет весьма благодарен всем, кто сочтет возможным высказать свои критические замечания в адрес предлагаемого пособия, которые будут восприняты как выражение желания оказать помощь в его улучшении при последующим переиздании.

ВНЕШНЕЕ ДЫХАНИЯ

Образование энергии, необходимой для обеспечения жизнедеятельности организма человека происходит на основе окислительных процессов. Для их осуществления необходим постоянный приток из внешней среды О 2 и непрерывное удаление из него СО 2 , образующийся в тканях в результате метаболизма.

Совокупность процессов, обеспечивающих поступление в организм О 2 , доставку и потребление его тканям и выделение конечного продукта дыхания СО 2 во внешнюю среду, называется дыханием. Это физиологическая система.

Человек может прожить без:

· пищи меньше месяца,

· воды - 10 дней,

· кислорода - 4-7 минуты (запаса нет). При этом прежде всего наступает гибель нервных клеток.

Сложный процесс газообмена с окружающей средой складывается из ряда последовательных процессов.

Внешнее дыхание (легочное) :

1. Обмен газов между легочным воздухом и атмосферным (вентиляция легких).

2. Обмен газов между легочным воздухом и кровью капилляров малого круга кровообращения.

Внутреннее:

3. Транспорт О 2 и СО 2 кровью.

4. Обмен газов между кровью и клетками (тканевое дыхание), то есть потребление О 2 и выделение СО 2 в процессе метаболизма.

Функцию внешнего дыхания и обновление газового состава крови у человека выполняют воздухоносные дыхательные пути и легкие.

Дыхательные пути: носовая и ротовая полость, гортань, трахея, бронхи, бронхиолы, альвеолярные ходы. Трахея у человека приблизительно равна 15 см и делится на два бронха: правый и левый. Они разветвляются на более мелкие бронхи, а последние - на бронхиолы (диаметром до 0,3 - 0,5 мм). Общее число бронхиол приблизительно равно 250 млн. Бронхиола ветвится на альвеолярные ходы, а они заканчиваются слепыми мешочками - альвеолами. Альвеолы внутри выстланы респираторным эпителием. Площадь поверхности всех альвеол у человека достигает 50-90 м 2 .

Каждая альвеола оплетена густой сетью кровеносных капилляров.

В слизистой оболочке дыхательных путей два вида клеток:

а) клетки мерцательного эпителия;

б) секреторные клетки.

Снаружи легкие покрыты тонкой, серозной оболочкой - плеврой.

В правом легком различают три доли: верхняя (верхушечная), средняя (сердечная), нижняя (диафрагматическая). В левом легком две доли (верхняя и нижняя).

Для осуществления процессов газообмена в строении легких имеется ряд приспособительных особенностей:

1. Наличие русла воздушного и кровеносного, разобщенных между собой тончайшей пленкой, состоящей из двойного слоя - самой альвеолы и капилляра (раздел воздуха и крови - толщина 0,004 мм). Через этот аэрогематический барьер происходит диффузия газов.

2. Обширная дыхательная площадь легких 50-90 м 2 приблизительно равно увеличению поверхности тела (1,7 м 2 0) в несколько десятков раз.

3. Наличие особого - малого круга кровообращения, специально выполняющего окислительную функцию (функцио-нальный круг). Малый круг частица крови проходит за 5 сек, а время ее соприкосновения со стенкой альвеолы только 0,25 - 0,7 сек.

4. Наличие в легких эластической ткани, способствующей расправлению и спаданию легких при вдохе и выдохе. Легкие находятся в состоянии эластического напряжения.

5. Наличие в дыхательных путях опорной хрящевой ткани в виде хрящевых бронхов. Это предупреждает спадение дыхательных путей и способствует быстрому и легкому прохождению воздуха.

Дыхательные движения

Вентиляция альвеол, необходимая для газообмена осущест-вляется благодаря чередованию вдоха (инспирации), выдоха (экспирации). При вдохе в альвеолы поступает воздух, насыщенный О 2 . При выдохе из них удаляется воздух, бедный О 2 , но более богатый СО 2 . Фаза вдоха и следующая за ним фаза выдоха составляет дыхательный цикл .

Передвижение воздуха обусловлено попеременным увеличением и уменьшением объема грудной клетки.

Механизм вдоха (инспирации).

Увеличение грудной полости в вертикальной, саггитальной, фронтальной плоскостях. Это обеспечивается: поднятием ребер и уплощением (опусканием) диафрагмы.

Движение ребер . Ребра образуют подвижные соединения с телами и поперечными отростками позвонков. Через две эти точки проходит ось вращения ребер. Ось вращения верхних ребер расположена почти горизонтально, поэтому при поднятии ребер размер грудной клетки увеличивается в переднезаднем направлении. Ось вращения нижних ребер располагается более саггитально. Поэтому при поднятии ребер объем грудной клетки увеличивается в боковом направлении.

Так как движение нижних ребер оказывают большее влияние на объем грудной клетки, то нижние доли легкого вентилируются лучше, чем верхушки.

Поднятие ребер происходит за счет сокращения инспираторных мышц. К ним относятся: наружние межреберные, внутренние межхрящевые мышцы. Мышечные волокна их ориентированы таким образом, что точка их прикрепления к нижнему ребру расположена дальше от центра вращения, чем точка прикрепления к вышележащему ребру. Их направление: сзади, сверху, вперед и вниз.

В результате грудная клетка увеличивается в объеме.

У здорового молодого мужчины разница между окружностью грудной клетки в положении вдоха и выдоха равна 7-10 см, у женщин равна 5-8 см. При форсированном дыхании подключаются вспомогательные инспираторные мышцы:

· - большие и малые грудные;

· - лестничные;

· - грудино-ключично-сосцевидная;

· - (частично) зубчатые;

· - трапециевидная и др.

Подключение вспомогательных иышц происходит при легочной вентиляции свыше 50 л/мин.

Движение диафрагмы . Диафрагма состоит из сухожильного центра и мышечных волокон, отходящих от этого центра во всех напрвлениях и прикрепляются к апертуре грудной клетки. Она имеет форму купола, выдающегося в грудную полость. При выдохе она прилегает к внутренней стенке грудной клетки на протяжении приблизительно равному 3 ребер. При вдохе диафрагма уплощается в результате сокращения ее мышечных волокон. При этом она отходит от внутренней поверхности грудной клетки и открываются реберно-диафрагмальные синусы.

Иннервация диафрагмы - диафрагмальными нервами от С 3 -С 5 . Односторонняя перерезка диафрагмального нерва на той же стороне диафрагма сильно вытягивается в грудную полость под действием давления внутренностей и тяги легких. Движение нижних отделов легких ограничивается. Таким образом, инспирация - это активный акт.

Механизм выдоха (экспирации) обеспечивается за счет:

· Тяжести грудной клетки.

· Эластичности реберных хрящей.

· Эластичности легких.

· Давления органов брюшной полости на диафрагму.

В состоянии покоя выдох происходит пассивно .

В форсированном дыхании принимают экспираторные мышцы: внутренние межреберные мышцы (их направление - сверху, назад, спереди, вниз) и вспомогательные экспираторные мышцы: мышцы, сгибающие позвоночник, мышцы брюшного пресса (ко-сые, прямая, поперечная). При сокращении последних органы брюшной полости оказывают давление на расслабленную диафрагму и она выпячивается в грудную полость.

Типы дыхания. В зависимости преимущественно за счет какого компонента (поднятия ребер или диафрагмы) происходит увеличение объема грудной клетки, выделяют 3 типа дыхания:

· - грудной (реберный);

· - брюшной;

· - смешанный.

В большей степени тип дыхания зависит от возраста (подвижность грудной клетки увеличивается), одежды (тесные корсажи, пеленание), профессии (у лиц, занимающихся физическим трудом - брюшной тип дыхания увеличивается). Брюшное дыхание затрудняется в последние месяцы беременности, и тогда дополнительно включается грудное.

Наиболее эффективен брюшной тип дыхания:

· - глубже вентиляция легких;

· - облегчается возврат венозной крови к сердцу.

Брюшной тип дыхания преобладает у работников физического труда, скалолазов, певцов и др. У ребенка после рождения вначале устанавливается брюшной тип дыхания, а позже - к 7 годам - грудной.

Давление в плевральной полости и его изменение при дыхании.

Легкие покрыты висцеральной, а пленка грудной полости - париетальной плеврой. Между ними содержится серозная жидкость. Они плотно прилегают друг к другу (щель 5-10 мкм) и скользят относительно друг друга. Это скольжение необходимо для того, чтобы легкие могли следовать за сложными изменениями грудной клетки не деформируясь. При воспалении (плеврит, спайки) уменьшается вентиляция соответствующих участков легких.

Если ввести иглу в плевральную полость и соединить ее с водным манометром, то окажется, что давление в ней:

· при вдохе - на 6-8 см Н 2 О

· при выдохе - на 3-5 см Н 2 О ниже атмосферного.

Эту разницу между внутриплевральным и атмосферным давлением обычно называют давлением в плевральной полости.

Отрицательное давление в плевральной полости обусловлено эластической тягой легких, т.е. стремлением легких к спадению.

При вдохе увеличение грудной полости ведет к повышению отрицательного давления в плевральной полости, т.е. возрастает транспульмональное давление, приводящее к расправлению легких (демонстрация при помощи аппарата Дондерса).

При расслаблении инспираторных мышц транспульмональное давление уменьшается и легкие в силу эластичности спадаются.

Если ввести в плевральную полость небольшое количество воздуха, то он рассосется, т. к. в крови мелких вен малого круга кровообращения напряжение растворенных газов меньше, чем в атмосфере.

Накоплению жидкости в плевральной полости препятствует более низкое онкотическое давление плевральной жидкости (меньше белков), чем в плазме. Имеет значение и понижение гидростатического давления в малом круге кровообращения.

Изменение давления в плевральной полости можно измерить прямым способом (но можно повредить легочную ткань). Поэтому лучше измерять его путем введения в пищевод (в грудную его часть) баллончика длиной 10 см. Стенки пищевода весьма податливы.

Эластическая тяга легких обусловлена 3 факторами:

1. Поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол.

2. Упругостью ткани стенок альвеол (содержат эластические волокна).

3. Тонусом бронхиальных мышц.

На любой поверхности раздела между воздухом и жидкостью действуют силы межмолекулярного сцепления, стремящиеся уменьшить величину этой поверхности (силы поверхностного натяжения). Под влиянием этих сил альвеолы стремятся сократиться. Силы поверхностного натяжения создают 2/3 эластической тяги легких. Поверхностное натяжение альвеол в 10 раз меньше теоретически рассчитанного для соответствующей водной поверхности.

Если бы внутренняя поверхность альвеолы была покрыта водным раствором, то поверхностное натяжение должно было быть в 5-8 раз больше. В этих условиях было бы спадение альвеол (ателектаз). Но этого не происходит.

Это значит, что в альвеолярной жидкости на внутренней поверхности альвеол имеются вещества, снижающие поверхностное натяжение, т. е. ПАВ. Их молекулы сильно притягиваются к друг другу, но обладают слабым средством с жидкостью, вследствие этого они собираются на поверхности и тем самым снижают поверхностное натяжение.

Такие вещества называются поверхностно активными веществами (ПАВ), роль которых в данном случае выполняют так называемые сурфактанты. Они представляют собой липиды и белки. Образуются специальными клетками альвеол - пневмоцитами II типа. Выстилка имеет толщину 20-100 нм. Но наибольшей поверхностной активностью компонентов этой смеси обладают производные лецитина.

При уменьшении размеров альвеол. молекулы сурфактанта сближаются, их плотность на единицу поверхности больше и поверхностное натяжение снижается - альвеола не спадается.

При увеличении (расширении) альвеол их поверхностное натяжение повышается, так как плотность сурфактанта на единицу поверхности понижается. Это усиливает эластическую тягу легких.

В процессе дыхания усиления дыхательных мышц тратится на преодоление не только эластического сопротивления легких и тканей грудной клетки, но и на преодоление неэластического сопротивления газовому потоку в воздухоносных путях, которое зависит от их просвета.

Нарушение образования сурфактантов приводит к спадению большого количества альвеол - ателектазу - отсутствие вентиляции обширных участков легких.

У новорожденных сурфактанты необходимы для расправления легких при первых дыхательных движениях.

Существует заболевание новорожденных, при котором поверхность альвеол покрыта преципитатом фибрина (геалиновые мембраны), который понижает активность сурфактантов - снижена. Это приводит к неполному расправлению легких и тяжелым нарушением газообмена.

При поступлении воздуха (пневмоторакс) в плевральную полость (через поврежденную грудную стенку или легкие) в силу эластичности легких - они спадаются и поджимаются к корню, занимая 1/3 своего объема.

При одностороннем пневмотораксе - легкое на неповрежденной стороне может обеспечивать достаточное насыщение крови О 2 и удаление СО 2 (в покое). При двухстороннем - если не производится искусственная вентиляция легких, или герметизация плевральной полости - к гибели.

Односторонний пневмоторакс иногда применяется для терапевтических целей: введение воздуха в плевральную полость для лечения туберкулеза (каверны).